Evaluation and comparison of performance of low-dose 128-slice CT scanner with different mAs values: A phantom study

Shilpa Singh1, Rajesh Sukkala2
1Department of Radiology, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
2Department of Radiology, Centurion University, Vizianagaram, Andhra Pradesh, India
DOI: 10.4103/jcar.JCar_25_20


OBJECTIVE: Radiation dose in computed tomography (CT) has been the concern of physicists ever since the introduction of CT scan. The objective of this study was to evaluate the performance of low-dose 128-slice CT scanner with different mAs values.
MATERIALS AND METHODS: Quantitative study was carried out at different values of mAs. Philips brilliance CT phantom with Philips ingenuity 128-slice low-dose CT scanner was chosen for this study. CT number linearity, CT number accuracy, slice thickness accuracy, high-contrast resolution, and low-contrast resolution were calculated and estimated computed tomography dose index volume (CTDIvol) for all the mAs values were recorded. Noise was calculated for all mAs values for comparison.
RESULTS: Data analysis shows that image quality was acceptable for all protocols. High-contrast resolution for all protocols was 20 line pairs per centimeter. Low-contrast resolution for 50 mAs images was 4 mm and 3 mm for other mAs protocols. Images acquired using 100 mAs revealed ring artifacts. CTDIvol using 50 mAs was 33% of the CTDIvol using 150 mAs. The dose–length product at 100 mAs was reduced to 66% of the dose–length product at 150 mAs, and the same at 50 mAs was reduced to 33%.
CONCLUSION: It is evident here that mAs has direct impact on the radiation dose to patient. With iDose4, mAs can be reduced to 50 mAs in multislice low-dose CT scan to reduce the radiation dose with minimal effect on image quality for slice thickness 4 mm. However, noise would dominate at tube current lower than 50 mAs for 120 kVp.

Keywords: Computed tomography dose optimization, fourth-generation iterative reconstruction, image quality, low-dose computed tomography