Elizabeth Jacobs, Maria Elena Martinez, Julie Buckmeier, Peter Lance, Melissa May, Peter Jurutka
Epidemiology and Biostatistics, Mel and Enid Zuckerman College of Public Health, Arizona Cancer Center, University of Arizona, P.O. Box 245024, Tucson, AZ 85724-5024, USA
DOI: 10.4103/1477-3163.76723
ABSTRACT
Background: Fibroblast growth factor-23 (FGF-23) is a phosphaturic peptide and a key component of an endocrine feedback loop along with the hormonal vitamin D metabolite 1,25(OH) 2 D. Vitamin D has been shown to be inversely related to colorectal neoplasia; therefore, we hypothesized that the effect of FGF-23 on vitamin D metabolite concentrations could have implications for the risk of colorectal neoplasia. Materials and Methods: The purpose of this study was to prospectively evaluate the association between circulating concentrations of FGF-23 and the risk of metachronous (recurrent) colorectal adenomas. FGF-23 levels were assessed in 100 male and female participants from the Ursodeoxycholic Acid Trial, 50 of whom had a metachronous colorectal adenoma and 50 who did not. Results: Compared to the lowest tertile of FGF-23, the adjusted odds ratios (95% CIs) for the second and third tertiles were 2.80 (0.94 to 8.31) and 3.41 (1.09 to 10.67), respectively (P-trend=.03). In a linear regression model, there was also a statistically significant inverse relationship between FGF-23 and 1,25(OH) 2 D (β-coefficient=-1.2; P=.001). In contrast, no statistically significant trend was observed between FGF-23 and 25(OH)D concentrations (β-coefficient=0.55; P=.10). Conclusions: The current work presents novel preliminary evidence of a relationship between FGF-23 and the risk for colorectal neoplasia. FGF-23 activity may be mediated through biologic effects on individual serum and colonic 1,25(OH) 2 D levels, or it may be independent from the vitamin D pathway. Further studies in larger populations are necessary for confirmation and expansion of these hypothesis-generating results.
Keywords: Adenoma, cancer, colorectal, fibroblast growth factor-23, fibroblast growth factor