Prolactin, TNF alpha and nitric oxide expression in nitroso-N-methylurea-induced-mammary tumours

Irene Vegh, Rafael Enriquez de Salamanca
Centro de Investigacion, Hospital Universitario 12 de Octubre. Madrid, Av. Cordoba s/n, CP, 28041, Spain
DOI: 10.1186/1477-3163-6-18

ABSTRACT

Background
The N-Nitrosomethylurea breast cancer model induced in rats is used for the study of carcinogenesis in mammary cancer, prostate, pancreas, etc. This model is very similar to human neoplastic disease.
Methods
The present experimental study was designed to assess whether metoclopramide administration has any effect on development of MNU-induced tumours, and evaluate the treatment of goserelin acetate on PRL, TNF alpha and NO expression. NMU was administered to female Wistar rats on 2 occasions (5 mg/100 g body w/rat). PRL and TNF alpha were performed by immune-assay. Nitric Oxide by semi automated-assay and ploidy analyses by flow cytometry.
Results
The administration of metoclopramide made the induction time shorter and increased the incidence and average of tumours per rat. Tumours development was inhibited by a goserelin chronic administration. The ploidy of adenocarcinoma was polyploid-aneuploid type (average S = 60%). It was higher basal PRL plasma levels in rats with NMU induced tumours than in basal controls without tumour (p < 0.001). The goserelin “in bolus” administration showed maximal inhibition of plasma PRL at 90 min. Plasmatic TNF alpha expression was inhibited at 60 min and also remained inhibited in tissue homogenate post chronic treatment (P < 0.0125). Plasmatic NO expression is higher in rats with induced tumours than healthy controls (P < 0.001). In tissue homogenate NO values were inhibited at 90 min (P < 0.01), as well during chronically goserelin treatment (P < 0.005).
Conclusion
The increase of blood PRL levels in NMU-induced rats may be an indicator of a poor prognosis of mammary cancer evolution. The metoclopramide administration accelerates tumour growth. However goserelin administration achieves regression in tumour development associated to inhibition PRL, TNF alpha and NO expression.