Bystander effects in UV-induced genomic instability: Antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation

Jostein Dahle, Egil Kvam, Trond Stokke
Department of Radiation Biology, The Norwegian Radium Hospital, Montebello, 0310 OSLO, Norway
DOI: 10.1186/1477-3163-4-11

ABSTRACT

Background: Genomic instability is characteristic of many types of human cancer. Recently, we reported that ultraviolet radiation induced elevated mutation rates and chromosomal instability for many cell generations after ultraviolet irradiation. The increased mutation rates of unstable cells may allow them to accumulate aberrations that subsequently lead to cancer. Ultraviolet A radiation, which primarily acts by oxidative stress, and ultraviolet B radiation, which initially acts by absorption in DNA and direct damage to DNA, both produced genomically unstable cell clones. In this study, we have determined the effect of antioxidants on induction of delayed mutations by ultraviolet radiation. Delayed mutations are indicative of genomic instability.
Methods: Delayed mutations in the hypoxanthine phosphoribosyl transferase ( hprt ) gene were detected by incubating the cells in medium selectively killing hprt mutants for 8 days after irradiation, followed by a 5 day period in normal medium before determining mutation frequencies.
Results: The UVB-induced delayed hprt mutations were strongly inhibited by the antioxidants catalase, reduced glutathione and superoxide dismutase, while only reduced glutathione had a significant effect on UVA-induced delayed mutations. Treatment with antioxidants had only minor effects on early mutation frequenies, except that reduced glutathione decreased the UVB-induced early mutation frequency by 24 %. Incubation with reduced glutathione was shown to significantly increase the intracellular amount of reduced glutathione.
Conclusion: The strong effects of these antioxidants indicate that genomic instability, which is induced by the fundamentally different ultraviolet A and ultraviolet B radiation, is mediated by reactive oxygen species, including hydrogen peroxide and downstream products. However, cells take up neither catalase nor SOD, while incubation with glutathione resulted in increased intracellular levels of glutathione. Previously, we have shown that ultraviolet induced delayed mutations may be induced via a bystander effect and that this effect is 5-fold higher for UVB radiation than for UVA radiation. Therefore, we propose that the antioxidants inhibit an ultraviolet radiation-induced bystander effect and that the effect is transmitted via the medium and via an internal transfer between cells, like gap junctional intercellular communication, for UVB radiation and only by the latter mechanism for UVA radiation.