

Integrating Quality Control and Assurance for Reliable Medical Laboratory Diagnostics: Current Practices and Future Perspectives

Mohammed Hamad Alzibarah ¹, Abdulrahman Hassan Al-Zubaid², Yahya Ahmed Al Asiri³, Mohammed Ibrahiem AL Sagoor⁴, Abdullah Mohammed Hussein Al-Sehab⁵, Ibrahim Saleh Albakri⁶, Ibrahem Ahmad Ali Almashaham⁷, Mohammed Hassan Alsharyah⁸, Hadi Mohammad saleh Al Mnsoore⁹, Nasser zaied Balharth¹⁰

¹Ministry of health, Saudi Arabia Email ID: Malzibarah@moh.gov.sa ²Ministry of health, Saudi Arabia Email ID: ahsz2016@hotmail.com ³Ministry of health, Saudi Arabia Email ID: yalasiri2@moh.gov.sa ⁴Ministry of health, Saudi Arabia Email ID : Mialsagoor@moh.gov.sa ⁵Ministry of health, Saudi Arabia Email ID: <u>aalyamai@moh.gov.sa</u> ⁶Ministry of health, Saudi Arabia Email ID: <u>ialbakri@moh.gov.sa</u> ⁷Ministry of health, Saudi Arabia Email ID: ebrahim01398@gmail.com ⁸Ministry of health, Saudi Arabia Email ID: a1025950443@gmail.com ⁹Ministry of health, Saudi Arabia Email ID: hadi-fac@hotmail.com ¹⁰Ministry of health, Saudi Arabia

Email ID: Nbalharith@moh.gov.sa

ABSTRACT

Medical laboratory diagnostics plays a central role in modern healthcare, shaping clinical decisions and patient outcomes. Ensuring reliability, accuracy, and reproducibility of test results requires a systematic integration of quality control (QC) and quality assurance (QA) practices. This review explores the evolution of QC and QA in medical laboratories, highlighting contemporary standards, frameworks, and regulatory guidelines that safeguard diagnostic accuracy. It further examines challenges in maintaining robust quality systems, such as human error, technological variability, and resource limitations, while also considering the transformative role of automation, digital health, and artificial intelligence. By synthesizing current practices with forward-looking perspectives, this paper argues that integrating QC and QA into a unified, adaptive model is essential for sustainable improvement in patient safety, diagnostic trustworthiness, and healthcare efficiency..

Keywords: Quality control, Quality assurance, Medical laboratory diagnostics, Patient safety, Accreditation, Laboratory management, Future perspectives

How to Cite: Mohammed Hamad Alzibarah, Abdulrahman Hassan Al-Zubaid, Yahya Ahmed Al Asiri, Mohammed Ibrahiem AL Sagoor, Abdullah Mohammed Hussein Al-Sehab, Ibrahim Saleh Albakri, Ibrahem Ahmad Ali Almashaham, Mohammed Hassan Alsharyah, Hadi Mohammad saleh Al Mnsoore, Nasser zaied Balharth, (2025) Integrating Quality Control and Assurance for Reliable Medical Laboratory Diagnostics: Current Practices and Future Perspectives, *Journal of Carcinogenesis*, *Vol.24*, *No.5s*, 185-191

1. INTRODUCTION

Medical laboratories are indispensable to modern healthcare, serving as the foundation for evidence-based clinical decision-making. It is estimated that nearly 70% of medical diagnoses and treatment decisions rely on laboratory results (Lippi & Plebani, 2020). The accuracy, reliability, and reproducibility of these results directly influence patient outcomes, making the implementation of robust quality systems a cornerstone of laboratory medicine. However, as diagnostic technologies become increasingly complex, the need for integrated quality frameworks has never been greater.

Quality control (QC) and quality assurance (QA) represent the two pillars of laboratory quality management. QC refers to the operational techniques and monitoring systems that ensure the accuracy and precision of test results on a daily basis, including the use of internal controls, calibration, and statistical rules to detect analytical errors (Westgard, 2018). In contrast, QA encompasses a broader, systematic process designed to ensure consistent adherence to standards, guidelines, and accreditation requirements, such as ISO 15189 and Clinical Laboratory Improvement Amendments (CLIA) (Plebani, 2019). While QC focuses on identifying and correcting errors within a specific analytical run, QA emphasizes continuous improvement and long-term reliability of laboratory services.

In practice, both QC and QA are often treated as parallel systems rather than integrated components. This separation can create gaps in error detection and response, potentially undermining diagnostic reliability. For instance, studies have shown that pre-analytical and post-analytical phases—often excluded from traditional QC programs—are responsible for the majority of laboratory errors (Carraro & Plebani, 2017). QA frameworks attempt to address these issues through broader system oversight, yet without strong QC foundations, assurance measures can remain ineffective.

The growing complexity of laboratory diagnostics, including molecular testing, automation, and point-of-care technologies, demands a re-examination of how QC and QA interact. The integration of digital tools, middleware systems, and artificial intelligence (AI) into laboratory workflows presents opportunities for a more seamless, adaptive quality system capable of real-time monitoring, predictive analytics, and continuous process optimization (Crawford & Harris, 2021). Additionally, global health crises such as the COVID-19 pandemic have highlighted the vulnerabilities of laboratory systems, emphasizing the importance of resilient quality frameworks that can maintain accuracy and trust under pressure (Zou et al., 2020).

This review aims to explore current practices in quality control and assurance in medical laboratories, examine the challenges that hinder their effectiveness, and propose strategies for integration. By focusing on both existing frameworks and future innovations, the article highlights how unifying QC and QA into a cohesive system can enhance patient safety, strengthen diagnostic trustworthiness, and contribute to more efficient healthcare delivery.

2. CURRENT PRACTICES IN QUALITY CONTROL AND ASSURANCE

Quality management in medical laboratories is built upon a dual framework of quality control (QC) and quality assurance (QA), both of which serve as essential mechanisms to guarantee the accuracy, reliability, and consistency of diagnostic results. QC represents the operational foundation of laboratory testing, encompassing activities such as calibration of instruments, use of control materials, and application of statistical monitoring systems to identify and correct analytical errors. For decades, internal QC processes have relied on statistical tools like the Westgard multirule system, which allow laboratories to detect both systematic and random deviations that could compromise test validity (Westgard, 2018). Advances in laboratory automation and middleware systems have further enhanced QC by integrating real-time error detection and corrective algorithms, thereby reducing human error and improving efficiency (Crawford & Harris, 2021).

While QC focuses primarily on day-to-day analytical performance, QA provides a broader, systemic framework designed to ensure the long-term reliability and consistency of laboratory services. QA practices extend beyond the analytical phase to encompass pre-analytical and post-analytical processes, which account for the majority of laboratory errors (Carraro & Plebani, 2017). The scope of QA includes staff competency assessment, equipment validation, documentation, standard operating procedures, and the establishment of a culture of continuous improvement. International accreditation systems such as ISO 15189 and the Clinical Laboratory Improvement Amendments (CLIA) have become the benchmark for QA implementation, mandating standardized practices and external oversight to ensure global comparability of laboratory results (Plebani, 2019).

A central component of QA is proficiency testing, also known as external quality assessment (EQA), in which laboratories regularly evaluate their performance against peer institutions using standardized samples. EQA programs provide an objective measure of accuracy and comparability, offering laboratories valuable feedback for corrective action and performance improvement (Stenman & Hawthorne, 2019). These programs complement internal QC by highlighting systemic issues that may not be captured by daily monitoring alone. Furthermore, the implementation of total quality management (TQM) frameworks in laboratory medicine has reinforced the idea that quality is not merely a regulatory requirement but a strategic process that involves leadership, staff engagement, and continuous evaluation (Lippi & Plebani, 2020).

Workforce competence is another critical element underpinning both QC and QA. Skilled laboratory professionals are essential for implementing quality measures, interpreting control data, and ensuring adherence to international standards. Continuous training, credentialing, and participation in professional development programs strengthen the reliability of laboratory services and reduce the risk of error (World Health Organization, 2020). Increasingly, laboratories are adopting digital tools and e-learning platforms to support workforce training and performance monitoring, particularly in settings where resources are limited.

The integration of technology has transformed QC and QA practices in recent years. Automated systems now allow for the continuous tracking of QC indicators, while laboratory information systems (LIS) and artificial intelligence tools are increasingly being used to predict errors and optimize workflow. These innovations are particularly valuable in high-throughput laboratories, where the scale and complexity of testing make manual oversight insufficient. Nevertheless, challenges remain in harmonizing these systems globally, as disparities in resources, regulations, and workforce capacity create uneven implementation of quality frameworks across different healthcare settings (Stenman & Hawthorne, 2019).

Overall, current practices in QC and QA emphasize a complementary relationship between operational control and systemic assurance. When effectively integrated, these approaches provide a comprehensive framework that strengthens diagnostic accuracy, enhances patient safety, and fosters trust in medical laboratory results.

3. CHALLENGES IN MAINTAINING QUALITY

Despite significant progress in establishing quality frameworks in medical laboratories, ensuring consistent accuracy and reliability of results remains a complex challenge. One of the most persistent obstacles is **human error**, which continues to account for a large proportion of laboratory mistakes, particularly in the pre-analytical and post-analytical phases. Factors such as heavy workload, fatigue, and insufficient training contribute to errors in specimen collection, labeling, and data interpretation (Carraro & Plebani, 2017). While automation has reduced some manual errors, the increasing complexity of laboratory technology often requires specialized skills, and a lack of continuous professional development can limit effective use of these systems (WHO, 2020).

Technological variability represents another challenge in maintaining quality. Different analyzers, reagent batches, and calibration systems can yield variable results if not standardized appropriately. This lack of harmonization complicates result comparability across laboratories and healthcare systems. For example, even widely used assays such as those for glucose or creatinine may differ depending on the methodology and instrument applied, which can directly influence clinical decision-making (Stenman & Hawthorne, 2019). Efforts to standardize laboratory methods have improved consistency, but disparities remain, particularly in resource-limited settings where older equipment and outdated protocols are still in use.

Resource limitations pose additional barriers, particularly in low- and middle-income countries. Implementing and maintaining comprehensive quality assurance (QA) and quality control (QC) systems requires financial investment in infrastructure, reagents, training, and accreditation processes. Many laboratories in these settings face shortages of trained personnel, inadequate supply chains, and insufficient funding for external quality assessment programs. These limitations not only compromise diagnostic accuracy but also undermine patient trust and contribute to inequities in healthcare outcomes (Nkengasong et al., 2018).

Regulatory disparities further complicate the global quality landscape. While international frameworks such as ISO 15189 provide structured guidance, not all countries enforce or adopt these standards. Laboratories working under less stringent national regulations may lack systematic QA programs, leading to inconsistencies in test reliability. Even within accredited laboratories, variations in the interpretation and implementation of standards can affect quality outcomes (Plebani, 2019). The absence of universal enforcement mechanisms makes harmonization a significant challenge, especially when laboratories collaborate across borders for research or disease surveillance.

The emergence of **new diagnostic technologies**, including molecular diagnostics, point-of-care testing (POCT), and next-generation sequencing, has introduced fresh challenges. These technologies often require specialized protocols and rigorous validation processes to ensure accuracy. However, POCT in particular is vulnerable to quality issues, as testing is frequently performed outside traditional laboratory settings by non-laboratory personnel, raising concerns about training, oversight, and integration with established QA frameworks (Luppa et al., 2016).

Finally, **crisis situations such as pandemics** highlight vulnerabilities in laboratory quality systems. During the COVID-19 pandemic, laboratories worldwide faced unprecedented testing demands, shortages of reagents, and rapidly changing protocols. These pressures exposed gaps in QC and QA infrastructures, particularly in rapidly established testing sites that lacked sufficient oversight mechanisms (Zou et al., 2020). Maintaining quality under such circumstances requires resilience, flexibility, and innovative approaches, yet many laboratories struggled to adapt, leading to concerns about false results and compromised patient safety.

In summary, challenges in maintaining quality in medical laboratories stem from a combination of human, technological, regulatory, and resource-related factors. Addressing these issues requires not only stronger adherence to established standards but also innovative strategies that leverage digital transformation, workforce development, and global harmonization efforts to ensure sustainable quality in laboratory medicine.

4. INTEGRATING QC AND QA: TOWARDS A UNIFIED MODEL

Although quality control (QC) and quality assurance (QA) have traditionally been implemented as separate but complementary systems, the growing complexity of medical diagnostics highlights the need for a more **integrated model**. Rather than functioning as parallel structures, QC and QA should be woven into a unified framework that simultaneously monitors daily laboratory performance and ensures long-term compliance with standards, accreditation, and patient safety goals.

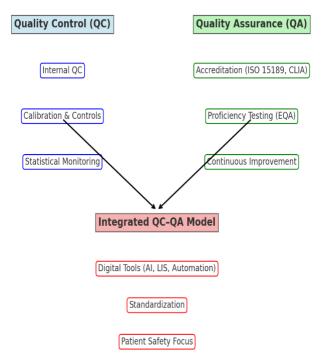


Figure 1. Integrated QC-QA Conceptual Model for Medical Laboratories

An integrated QC-QA system emphasizes **real-time data sharing**, where information from internal quality control processes feeds directly into broader QA monitoring. This allows laboratories to respond quickly to deviations while also informing systemic improvements. For example, deviations detected by statistical QC methods can trigger not only corrective actions in testing but also workforce retraining, equipment recalibration, and review of standard operating procedures. In this way, QC becomes the operational "engine" that drives QA, while QA provides the structural "safety net" that ensures reliability and continuous improvement (Plebani, 2019; Westgard, 2018).

The integration process is also being accelerated by **digital transformation** in laboratory medicine. Laboratory information systems (LIS), middleware platforms, and artificial intelligence (AI) algorithms now allow for predictive error detection, automated trend analysis, and harmonized reporting (Crawford & Harris, 2021). Moreover, harmonization efforts such as ISO 15189 accreditation increasingly encourage laboratories to embed QC data into QA documentation, creating transparency and accountability across healthcare systems (Stenman & Hawthorne, 2019).

Another dimension of integration is the alignment of laboratory quality systems with **patient-centered outcomes**. By treating QC and QA not merely as compliance exercises but as safeguards of diagnostic reliability, laboratories can reinforce trust in healthcare delivery. This model positions quality as a dynamic, adaptive process rather than a static requirement, capable of responding to emerging technologies, pandemics, and resource disparities.

Table 1. Comparison of Traditional vs. Integrated QC-QA Models in Medical Laboratories

Aspect	Traditional Approach (QC & QA Separate)	Integrated QC-QA Model
Focus	QC = analytical accuracy; QA = compliance and oversight	Unified patient-centered reliability
Data Flow	Parallel reporting, limited feedback between QC and QA	Continuous real-time integration between QC and QA
Error Detection	Post-analytical, reactive	Predictive, proactive, real-time monitoring
Technology Use	Manual QC checks, basic QA audits	Digital systems, AI-driven analytics, automated LIS integration
Outcome Orientation	Compliance-focused	Patient safety and continuous improvement
Global Harmonization	Variable across laboratories and regions	Facilitates standardization and comparability

By consolidating QC and QA into a **single adaptive framework**, laboratories can improve diagnostic accuracy, enhance resilience in crisis situations, and align with global best practices. This integration not only ensures compliance with regulatory standards but also strengthens the laboratory's role as a trusted partner in clinical decision-making.

5. FUTURE PERSPECTIVES

The future of quality management in medical laboratories lies in the creation of **adaptive**, **technology-enabled systems** that integrate quality control (QC) and quality assurance (QA) into a seamless continuum. As healthcare systems become increasingly reliant on precision diagnostics, laboratories must evolve from traditional compliance-driven models toward dynamic frameworks capable of real-time monitoring, predictive error detection, and global harmonization.

One of the most promising directions is the incorporation of **artificial intelligence (AI) and big data analytics** into laboratory workflows. AI-driven algorithms are already being applied to QC processes to identify subtle trends in instrument performance and predict deviations before they result in diagnostic errors (Crawford & Harris, 2021). Predictive analytics not only reduce turnaround time for error detection but also enable laboratories to implement preventive measures, thereby transforming quality from a reactive to a proactive process.

Automation and robotics will further advance laboratory quality by reducing reliance on manual processes, which remain a significant source of human error. Automated platforms are increasingly capable of integrating QC checks into routine workflows without interrupting sample throughput. These systems also support the use of digital twins—virtual models of laboratory processes—that can simulate scenarios, optimize workflows, and test corrective actions before implementation (Rajkomar et al., 2019).

The expansion of **point-of-care testing (POCT)** and decentralized diagnostics presents another critical challenge for the future of QA/QC. As testing moves beyond central laboratories to clinics, pharmacies, and even patient homes, ensuring quality becomes more complex. To address this, future QA frameworks must extend to non-laboratory settings, embedding digital oversight mechanisms and remote monitoring systems to guarantee the same level of reliability as centralized labs (Luppa et al., 2016).

Global health crises, such as the COVID-19 pandemic, have also highlighted the importance of **resilient and flexible quality systems**. Laboratories must be prepared to rapidly scale up testing capacity while maintaining accuracy, even under resource and workforce constraints. This will require the adoption of flexible QA models that can adapt to emergencies, supported by international collaborations to harmonize testing standards and share quality data across borders (Zou et al., 2020).

Another emerging perspective is the integration of **sustainability into quality systems**. Green laboratory practices, waste reduction, and energy-efficient technologies are increasingly being recognized as essential components of long-term quality assurance. Embedding sustainability metrics into QA frameworks ensures that laboratories not only deliver accurate results but also contribute to global environmental goals (Ali et al., 2021).

Ultimately, the future of QC and QA in medical laboratories will depend on **global harmonization**. International standardization bodies such as ISO and the World Health Organization (WHO) are likely to push for greater interoperability

of quality systems, allowing laboratories across the globe to exchange comparable results. Such harmonization is particularly vital in the context of global health surveillance, antimicrobial resistance monitoring, and pandemic preparedness, where cross-border trust in laboratory data is essential (Stenman & Hawthorne, 2019).

In conclusion, the integration of AI, automation, decentralized testing oversight, sustainability initiatives, and global harmonization represents the next frontier for laboratory quality management. By embracing these innovations, medical laboratories can transform quality from a static compliance requirement into a **dynamic, predictive, and patient-centered framework** that is resilient to future healthcare challenges.

6. DISCUSSION

The integration of quality control (QC) and quality assurance (QA) in medical laboratories represents not only a technical necessity but also a strategic transformation in the way diagnostic reliability is conceptualized. As outlined in previous sections, QC has traditionally focused on daily operational checks to ensure analytical accuracy, while QA has been concerned with broader system-wide oversight and long-term compliance. Treating them as parallel but separate systems has provided a strong foundation for laboratory quality; however, this compartmentalization also introduces gaps in oversight, particularly in addressing pre-analytical and post-analytical errors that remain the most frequent contributors to diagnostic inaccuracies (Carraro & Plebani, 2017).

The challenges facing laboratories today underscore the limitations of current frameworks. Human error, resource limitations, and technological variability remain persistent threats to quality, particularly in low- and middle-income settings where infrastructure for robust QA/QC systems is often lacking (Nkengasong et al., 2018). Even in high-income countries, the COVID-19 pandemic demonstrated how surges in testing demand can strain quality systems, resulting in variability and lapses in diagnostic accuracy (Zou et al., 2020). These experiences reveal that static, compliance-focused systems are insufficient to meet the evolving demands of modern healthcare.

Integrating QC and QA into a **unified model** provides a more resilient and adaptive framework. By ensuring that data generated through QC processes feed directly into QA oversight, laboratories can establish continuous feedback loops that enhance both immediate error detection and long-term quality improvement. This approach aligns with principles of total quality management (TQM), which emphasize the importance of embedding quality as a culture rather than an isolated process (Lippi & Plebani, 2020). Moreover, digital innovations such as AI-driven predictive analytics and automated middleware offer opportunities to transform QC from a reactive process into a proactive one, thereby reducing turnaround times for error detection and intervention (Crawford & Harris, 2021).

Another critical element of integration is the alignment of laboratory quality systems with **patient-centered care**. Laboratories that view QC and QA primarily as compliance tasks risk losing sight of their ultimate purpose: safeguarding patient outcomes. A patient-centered quality framework positions laboratory quality as a dynamic process directly tied to clinical decision-making and healthcare efficiency. For example, ensuring harmonization of test results across laboratories is essential for continuity of care in patients who may receive treatment from multiple providers or across international borders (Stenman & Hawthorne, 2019).

Looking forward, the discussion of **future perspectives** highlights several emerging opportunities and challenges. Automation, AI, and robotics promise to reduce human error and improve efficiency, but they also require significant investment and workforce training. Similarly, the rise of decentralized testing, such as point-of-care testing (POCT), demands new oversight mechanisms to ensure that quality standards are upheld outside traditional laboratory environments (Luppa et al., 2016). These technological advances must be accompanied by parallel efforts to harmonize global standards, promote equitable access to quality systems, and integrate sustainability into laboratory practices (Ali et al., 2021).

In sum, the integration of QC and QA reflects a shift from viewing quality as a static regulatory requirement to recognizing it as a **dynamic**, **adaptive**, **and patient-centered process**. While challenges remain in harmonization, workforce development, and resource allocation, the convergence of digital innovation, global collaboration, and a stronger focus on patient outcomes provides a clear roadmap for the future of laboratory quality management. This transformation is essential to ensuring that laboratories remain trusted pillars of healthcare systems worldwide.

7. CONCLUSION

Quality control (QC) and quality assurance (QA) remain the cornerstone of reliable medical laboratory diagnostics, yet their traditional separation has limited the ability of laboratories to deliver optimal accuracy, efficiency, and resilience. This review has demonstrated that current practices—ranging from internal QC procedures to international accreditation systems—have provided a strong framework for ensuring diagnostic reliability. However, persistent challenges such as human error, technological variability, regulatory disparities, and resource limitations highlight the need for a more integrated approach.

The integration of QC and QA into a unified model offers significant advantages. By embedding real-time QC monitoring into broader QA systems, laboratories can establish continuous feedback loops that transform quality from a reactive

process into a proactive and predictive framework. The adoption of advanced digital tools, automation, and artificial intelligence further strengthens this integration, enabling laboratories to detect deviations earlier, optimize workflows, and reduce reliance on manual oversight. At the same time, harmonization of international standards and equitable resource allocation remain essential to ensure that laboratories worldwide can deliver comparable and trustworthy results.

Looking ahead, the future of laboratory quality lies in adopting **adaptive**, **patient-centered systems** that prioritize diagnostic accuracy and healthcare outcomes. This includes strengthening workforce competence, extending quality oversight to decentralized testing environments, and embedding sustainability practices into quality frameworks. Global collaboration will be critical in driving harmonization, particularly in the context of public health emergencies and international disease surveillance.

In conclusion, the integration of QC and QA is not merely a procedural refinement but a strategic transformation in laboratory medicine. By aligning operational accuracy with systemic assurance, laboratories can safeguard patient safety, build diagnostic trust, and enhance the efficiency of healthcare delivery. The pathway forward requires innovation, investment, and international cooperation, but the outcome—a resilient, harmonized, and future-ready laboratory quality system—will ultimately strengthen global health outcomes

REFERENCES

- [1] Ali, S., Green, R., & Rees, J. (2021). Sustainable laboratory practices in healthcare: Balancing quality with environmental responsibility. Journal of Cleaner Production, 278, 123934. https://doi.org/10.1016/j.jclepro.2020.123934
- [2] Carraro, P., & Plebani, M. (2017). Errors in a stat laboratory: Types and frequencies 10 years later. Clinical Chemistry, 63(1), 234–239. https://doi.org/10.1373/clinchem.2016.258301
- [3] Crawford, J., & Harris, A. (2021). Digital transformation in laboratory medicine: Leveraging automation, artificial intelligence, and big data. Journal of Applied Laboratory Medicine, 6(4), 952–961. https://doi.org/10.1093/jalm/jfaa192
- [4] Lippi, G., & Plebani, M. (2020). Quality in laboratory diagnostics: From theory to practice. Clinical Chemistry and Laboratory Medicine, 58(9), 1347–1354. https://doi.org/10.1515/cclm-2020-0639
- [5] Luppa, P. B., Muller, C., Schlichtiger, A., & Schlebusch, H. (2016). Point-of-care testing (POCT): Current techniques and future perspectives. TrAC Trends in Analytical Chemistry, 82, 286–298. https://doi.org/10.1016/j.trac.2016.05.017
- [6] Nkengasong, J. N., Ndembi, N., Tshangela, A., & Raji, T. (2018). Laboratory medicine in low-income and middle-income countries: Progress and challenges. The Lancet, 391(10133), 1873–1885. https://doi.org/10.1016/S0140-6736(18)30308-8
- [7] Plebani, M. (2019). Quality in laboratory medicine: 50 years on. Clinical Biochemistry, 73, 1–3. https://doi.org/10.1016/j.clinbiochem.2019.06.003
- [8] Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347–1358. https://doi.org/10.1056/NEJMra1814259
- [9] Stenman, U. H., & Hawthorne, L. (2019). Standardization and harmonization of laboratory results. EJIFCC, 30(3), 211–220.
- [10] Westgard, J. O. (2018). Internal quality control: Planning and implementation strategies. Annals of Laboratory Medicine, 38(1), 1–8. https://doi.org/10.3343/alm.2018.38.1.1
- [11] World Health Organization. (2020). Laboratory quality management system: Handbook. Geneva: WHO Press.
- [12] Zou, G., Zhang, L., & Lin, X. (2020). Laboratory quality management during the COVID-19 pandemic: Challenges and strategies. International Journal of Laboratory Hematology, 42(6), 745–750. https://doi.org/10.1111/ijlh.13315..