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ABSTRACT

Parkinson’s Disease is a one of the progressive neurological disorders that often goes undetermined in its early stages due
to subtle symptoms, especially in voice and motor control. In this chapter, we explore a practical way to detecting
Parkinson’s disorder via supervised-trained Modeling techniques applied to structured biomedical information. The dataset
used consists of 569 voices collected from 31 individuals, with each sample described by 22 parameters such as shimmer,
pitch frequencies, jitter, noise ratios, and non-linear vocal signal patterns.

These features were pre-processed and standardized before fading into multiple supervised classification models including
Logistic Reg, Support Vector classifier, K-Nearest Neighbour classifier, DT, and RF. All trained models were evaluate
using real-world performance metrics like accuracy, F1-score, precision, recall, and curve of ROC-AUC. Among all models
tested, Random Forest classifier achieved the most reliable results with strong generalization capability on unseen data.

To support practical understanding, model visualizations such as confusion matrices, decision trees, and SVM boundary
plots generated. The results show that machine learning models trained on structured clinical data can effectively support
early-stage PD detection. This work demonstrates how integrating healthcare records and Al-based predictive tools can
assist clinicians in faster and more accurate diagnosis of Parkinson’s Disease, contributing toward more intelligent and
accessible medical systems.
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1. INTRODUCTION

Learning models in healthcare industry is one of the emerging and growing domains recognized globally. Applications of
modeling technology is not only helpful in diseases predictions but also helpful to store data, manage overall healthcare
system, advanced medical data, reports and help full to upgrade medical devices. Learning models are helpful to all medical
professionals to handle diverse type of medical data from different-different sources.

From a clinical standpoint, early diagnosis of Parkinson’s Disease is crucial, as it enables timely intervention that can slow
disease progression and improve quality of life. Traditional diagnostic methods rely heavily on neurological examinations
and observation of motor symptoms, which often appear only after significant neuronal damage has occurred. However,
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non-motor symptoms, particularly vocal impairments such as reduced pitch variation, tremor, and breathiness, often emerge
in the early stages of the disease and may serve as valuable diagnostic biomarkers. A voice-based assessment is non-
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invasive, simple to repeat and inexpensive way of screening and for monitoring PD patients, thus providing a hope in future
that it can be included in routine clinical practice. Given these challenges, the use of machine learning to detect subtle
changes in voice points towards a potential method for increasing diagnostic accuracy and aiding neurologists in early
stage diagnosis.

2. LITERATURE REVIEW

Parkinson’s Diagnosis in Such an Unorthodox Manner — As Voice Analysis - The Puzzle of Parkinson's Disease via ML
A foundational contribution in this realm is that of Little et al. (2008) developed and made available a biomedical voice
dataset, to obtain signs of dysphonia that is now used by many studies in PD classification.

Recent studies have proven the effectiveness of several ML algorithms for detection of PD via vocal features [41,42,43].
Sayed et al. An exploration of advanced ML techniques on vocal biomarkers ( 2023) found that ensemble learning
significantly outperformed other methods. Similar findings echoed by Alshammri et al. (2023), who observed that models
like Random Forest (RF) outperformed traditional classifiers in accuracy and stability. In alignment with these studies, the
current work found RF to yield the highest overall accuracy of 95% and an F1-score of 0.97, outperforming other tested
models such as Logistic Reg, DT, SVC, or KNN

Model interpretability, especially in clinical contexts, has also gained attention in recent literature. Simone et al. (2025)
Underlined the need for clear and understandable ML models for early-stage PD detection. This resonates with our findings,
where tree-based algorithms such as DT & RF does not only perform well but also offered reliability in their predictions,
which is essential for medical decision-making. The impact of feature selection and preprocessing on model performance
has been examined in several studies. Bharath and Rajagopalan (2023) applied Kerb feature selection to improve Random
Forest accuracy, while Abdelkader et al. (2023) focused on engineering relevant speech features for early PD identification.
Our study similarly applied standardization and careful feature preparation, which likely contributed to strong model
generalization and reduced false classifications. SVM’s performance in PD detection has shown variability across studies.
While generally robust, it often benefits from dimensionality reduction techniques like PCA. Patil et al. had also observed
this trend. (2024) and Joshi et al., 2024) who both found that the use of PCA and SVM in concert improved classification
metrics. The results improved in case of SVM applying PCA, it stands a bit better but still not best and lagging behind
Random Forest/Decision Tree. Even today, Logistic Regression remains a popularly used baseline model in several other
comparative studies (Nazari et al., 2024; Das et al., 2023). Our analysis of results showed it provided excellent recall, but
also higher amount of false positives — a known limitation for linear classifiers. In turn, with the expense of much lower
accuracy we were able to classify 88% of our data via interpretable Decision Trees. The ensemble learning models to
process complex biomedical features have been validated in many respects, which are reflected in a considerable number
of studies. Ghaheri et al. (2023) and Reddy et al. (2024) show that the use of ensemble models can increase prediction
reliability. This is also in agreement with our observation that Random Forest provided the most well-rounded and stable
performance across both healthy and Parkinsonian samples. Another study (with comparative approach) also charmingly
supports the dominance of Random Forest over KNN and SVM.. For instance, Dutta et al. (2023), Jahan et al. (2023), and
Li et al. (2024) found RF to be more adaptable to nonlinear and high-dimensional voice data. This supports our
experimental results, where KNN achieved the lowest accuracy (82%) among the tested models, confirming that simpler
distance-based classifiers may not be ideal for complex clinical datasets.

Collectively, the literature highlights that ML models—especially ensemble-based approaches—are well-suited for early
PD detection when trained on structured, clinically relevant voice data. Our study reinforces this conclusion, showing that
when combined with proper feature scaling and evaluation, models like Random Forest can deliver high diagnostic
accuracy while maintaining interpretability, an essential requirement in healthcare applications.

3. HEALTHCARE AND TECHNOLOGY

In the age of traditional healthcare system, maybe professionals can do their duties using manual approaches but in the age
of modern healthcare, it is hard to complete their medical tasks on the right time in the absence of huge amount of

time. Even each task is going to complex and challenging. With the integration od emerging technologies, healthcare sector
doesn’t even growing day-by-day but also rapidly become more helpful for life. Modern technologies open new avenues
for early stage prediction and more accurately based on patients symptoms and past medical history for complex health
issues such as PD. The intersection of modern healthcare and intelligent technology has significantly advanced early
diagnostic capabilities, particularly in neurodegenerative disorders such as Parkinson’s Disease (PD). Traditionally, PD
diagnosis relies on the clinical observation of motor symptoms, which often appear only after considerable neuronal loss
has occurred. However, growing clinical evidence suggests that vocal impairments—such as reduced pitch variation,
breathiness, and vocal tremors—can manifest in early stages of the disease (Little et al., 2008). These subtle markers are
often difficult to detect consistently through conventional assessment alone. Machine learning techniques, especially those
trained on biomedical voice data, offer a promising solution by capturing and analyzing complex acoustic patterns linked
to PD onset. Such data-driven models not only improve diagnostic accuracy but also offer scalable, non-invasive tools
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suitable for remote or resource-limited settings. By combining clinical insight with algorithmic efficiency, technology is
helping to transform early screening and monitoring in neurological healthcare.

4. METHODOLOGY

To predict the Parkinson effectively, we used data from UCI machine repository to define and analysis Parkinson more
robustly. We try to reduce mortality rate with analysis medical data from Parkinson’s patients. For this study, we are
following crucial stages:

4.1. Data collection and description

In this study, we utilized a publicly available biomedical voice dataset originally introduced by Max A. Little et al. (2008)
as part of their research on remote telemonitoring of Parkinson’s Disease (PD) symptoms [DOI: 10.24432/C59C74]. The
dataset was obtained from the UCI Machine Learning Repository and includes voice notes collected from 31 individuals,
of whom 23 were diagnosed with Parkinson’s Disease and 8 were healthy controls.

e MOVPF MPVP.F MOVP:F|| MOVP.i| MOVJi | MOVP:R | MOV iter:0D MPVP.S Shimmer Shimmer | Shimmer| MOVP:A |Shimmer WA | HR | BOE | OFA | el 00 | PE | o
off) | hilbe) | o] | tter] terhbs)] AP | PQ | P |himmer| (dB] | :APQ3 | :APQS | PQ | :DDA ‘
|

phon RO1 S01.1 | 119.992) 157302 74997) 0.00784] 000007| 00037| 000534 0.01109| 004374| 0426 002182 00313) 002971 0.065453 00221[ 21033 04148) 08153| 48132 02665) 23014 02847 !
|

]
phon ROLS02 | 1224] 14885| 113819) 0.00968) 0.00008) 000465 0.00695 0.01304( 006134 0.626] 003134) 003858) 003202 0.09339| 00195( 18085( 04603 08195 40752 03%%6] 2.4869) 03681 1

|
phon RO S01 3 | 116.682) 131111} 111555) (0.0105] 000009) 0.00544) 000762 0.01633| 005233 0.482) 0.02639| 0.0359] 003134 0.0786‘1 00178| 20651] 04048 08265\ 44432 03183) 23412 030 1

phon R01.501 4 | 116,676 137871 111366] 000997 0.0000S] 0.00502) 0.00698| 001506| 006425  0.574) 003024) 003794 0.03221) 0.09053) 00217| 20644 04172 08192 41175| 03346 2.4058) 03183 1

[

[ \
pon MLSOL5 | 16014) 141781 110655 0NS3| OIS OGS OIGH| OLLGT| 0DGAS| 0504 0LRI) QLBEL OIR) 00GI) O MDE51 0AMY ORI 45418 03137 2305 03674 1
‘ |

phon_R01.501.6 120.552: 131.162) 113.253| 0.00904) 0.00008] 000434] 0.00621 001301 005351 0466 002209) 003138 002757 0.066141 0,02093 0644 0419 08199 42603 0342 2314 03 1

phon ROL.S017 | 120267 137.244| 11482 000813 000007| 000398 000573 001195 005492) 048] 0.02305) 0.03277) 002741 0,06936; 00192 20651 0432 08251) 4281 03605) 23142 0| 1
|

Figure 1: sample of UCI datasets PK

The dataset comprises a total of 195 sustained phonation voice samples, each labeled with a binary status: 1 for PD and 0
for healthy subjects. Every sample is characterized by 22 distinct acoustic features, which were extracted from sustained
vowel phonations. These features include:

» Fundamental frequency measures such as average (Fo), maximum (Fhi), and minimum (Flo),
« Jitter and shimmer parameters indicating short-term frequency and amplitude variations,
« Harmonics-to-noise ratios (HNR) reflecting voice clarity,

 Nonlinear dynamic characteristics, including Recurrence Quantification Analysis (RQA) and Rescaled Range (R/S)
Analysis, which capture complexity and irregularity in vocal patterns.

All features are numerical, pre-extracted, and structured in tabular format, eliminating the need for additional signal
processing. The dataset is widely used in the literature for developing and benchmarking machine learning models for PD
detection, offering a consistent platform for comparative analysis.

4.2. Data Transformation

In this study, all features were pre-extracted and available within the structured dataset sourced from the UCI Public
Machine Learning Repository. The dataset includes 22 biomedical voice features computed from sustained phonation
recordings. These features represent various signal characteristics such as pitch frequency, amplitude perturbation, noise
ratios, and nonlinear signal dynamics. Since the dataset did not contain missing values, no imputation was required. To
ensure that all parameters contribute equally to the learning process, especially for distance-based algorithms like Support
Vector Machines, logistic reg., K-Nearest Neighbors, feature values were standardized using z-score normalization. This
transformation rescales the features to have unit variance and zero mean, improving model convergence and accuracy. No
dimensionality reduction was applied at this stage, preserving the full feature set for model training, testing and evaluation.
The structured, noise-free, and normalized nature of the dataset enabled efficient downstream application of supervised

© 2025 Journal of Carcinogenesis | Published for Carcinogenesis Press by Wolters Kluwer-Medknow pg. 561



learning algorithms for Parkinson’s disease classification.

4.3. Used Technology

This study was implemented using open-source technologies and widely adopted machine learning frameworks within the
Python programming ecosystem. The programming language Python was selected for its simplicity, extensive scientific
libraries, and strong community support in the field of machine learning and data science. Data preprocessing, exploration,
and transformation tasks performed using Pandas and NumPy for data manipulation and numerical computations.

The core machine learning models built and evaluated using the scikit-learn (sklearn) library, which offers robust and well-
optimized implementations of classical supervised algorithms. In this study, models such as Logistic Regression, Support
Vector Classifiers (SVM), K-Nearest Neighbors (KNN), RF & DT applied using scikit-learn’s API. These algorithms
selected due to their proven performance in classification tasks and interpretability in medical data analysis.

To evaluate the model and visualize the results, performance metrics like classification report, ROC curve, confusion matrix
and decision boundary of plots were generated using Matplotlib and Seaborn libraries. In addition, scikit-learn model
selection module was used to split and cross-validate the data (to ensure generalization of the models to new data coming
in).

Train data

s SL models

Test data

RESULT —

—

Validate predicted values

VALIDATION

OF 5L

Figure 2: steps to predict PK via SL from EHR-datasets
The entire workflow—from data acquisition and transformation to model training and visualization—was carried out in a
Jupyter Notebook environment, allowing for interactive development and efficient documentation. This combination of
technologies enabled a transparent, reproducible, and scalable pipeline for Parkinson’s disease prediction using supervised
machine learning.

4.4. Model Evolution

In this research work, supervised machine learning models have been implemented to predict heart disease and the
evaluation was done by using various classification metrics. These were accuracy, precision, recall (aka sensitivity), F1-
score, and the Area Under the Receiver Operating Characteristic Curve (AUC-ROC). Accuracy was an overall metric of
all correct predictive items from the total predictions. Precision was the ratio of positively identified patients among those
decided to be positive and recall was how good were we at detecting actual positive patient, very important for applications
like Parkinson disease identification in Healthcare which if falsely classified or missed could have serious consequences.
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F1-Score is the harmonic mean of precision and recall that gives a balanced view of the model performance w.r.t false
positives and false negatives. To get a complete picture, | created confusion matrices of each model to show how correct
and incorrect predictions were spread out over the 4 class outcomes (true positives, true negatives, false positives, false
negatives). ROC curves were created which plot the true positive rate against false positive rates for varying decision
thresholds with a value of 1.0 being desired, as close to 1.0 indicates that all the events are detected correctly and there are
no incorrect alarms similarly AUC was also generated where it is a performance measurement for classification problem
at various threshold settings.

Dataset splitting: 80 with training and 20% tested. Metrics were evaluated to compare model performance. We have
compared different algorithms and it was observed that Random Forest classifier performed the best in terms of accuracy
and F1-score among all the other algorithms implying stability & robustness of Random Forest classification to handle this
binary classification task.

5. SUPERVISED LEARNING IN PARKINSON

In this study, five supervised learning algo were implemented using Python based library like scikit-learn to classify
Parkinson’s Disease based on structured voice data. Each algo was trained using the same data preprocessing pipeline and
evaluated on an 80:20 train-test split to ensure consistency in performance comparison. The models were selected for their
diversity in learning approaches and practical relevance in healthcare applications. Below is a practical overview of each
model, how it was used, and the visualizations generated.

Logistic Regression

LR was used as a baseline algo for binary classification. It was implemented using scikit-learn’s LogisticRegression () with
a maximum iteration value set to 1000 to ensure convergence. After training the model on the voice data, we evaluated its
predictions on the test set using a classification report and confusion matrix. The algo achieved high recall for Parkinson’s
cases, making it useful in scenarios where false negatives must be minimized. However, it showed lower precision on
healthy cases, suggesting possible misclassifications.

Support Vector Machine (SVM)

The SVM model was implemented using a linear kernel, which is suitable for small-to-medium datasets. It demonstrated
solid classification performance but struggled slightly with class imbalance, especially with fewer healthy cases. A PCA
(Principal Component Analysis) reduction was applied for 2D visualization of decision boundaries, clearly showing how
the model separates the classes in reduced feature spac

SVM Decision Boundary (PCA-Reduced)
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Figure 3: Visualization of SVC via PCA reduction for PK
K-Nearest Neighbours (KNN)

KNN was trained using scikit-learn’s KNeighborsClassifier () with default parameters. As an instance-based learner, KNN
classifies upcoming data points based on the majority label of its nearest neighbours. It showed moderate performance but
was sensitive to data scaling and class imbalance. The model performed well for Parkinson’s cases but misclassified several
healthy samples.
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Decision Tree

The Decision Tree model was implemented using scikit-learn’s DecisionTreeClassifier (). It achieved high classification
accuracy and interpretability. The trained tree was visualized using plot_tree, allowing insight into how the model split the
data based on voice features like jitter, shimmer, and frequency. This visualization is valuable in clinical applications where
transparency is critical.

figure: Decision Tree Visualization

True, false

Figure 4: Visualization of custom-KNN for PK
Random Forest

Among all the models, the ensemble is general in terms of Classifier based Random Forest and shows robust performance
with consistently high accuracy. It was implemented by means of RandomForestClassifier () and the individual trees were
visualized with plot_tree function. The model showed such good performance on all evaluation metrics and was able to
learn those feature interactions without overfitting.

figure: Random Forest visualization

True, False

Figure 5: Visualization of custom-KNN for PK
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Confusion matrices provided the basis for further comparison of each model's performance, classification reports, and ROC
curves plotted during evaluation. These models collectively demonstrate the power of supervised learning in clinical data
applications, offering scalable tools for Parkinson’s Disease prediction.

6. RESULTS AND VARIABLES

This study sought to compare numerous supervised learning algorithms for classifying Parkinson's disease issues
employing structured biomedical speech data. The dataset contained 569 examples and 22 features depicting variations in
vocal frequency, amplitude, noise, and signal intricacy. After data preprocessing and standardization, the records were
divided into training and testing sets using an 80:20 split of the information set. Five commonly utilized classification
models were trained and evaluated: Logistic Regression, Support Vector Machine, K-Nearest Neighbors, Decision Tree,
and Random Forest. Each algorithm was assessed using efficiency metrics including accuracy, F1-score, recall, precision,
and curves.

Among all the algorithms, Random Forest accomplished the highest overall accuracy at 95%, accompanied by strong
precision and recall scores for both healthy and Parkinson's disease-affected classes. Decision Tree also performed well,
reaching an accuracy of 92%, while Support Vector Classification and K-Nearest Neighbours demonstrated somewhat
lower but still competitive performance.

Table 1: Comparative Performance of Machine Learning Models

Metric Log. Reg. | SVM KNN Decision Tree Egpeds(:m
Precision (negative case) 1.00 0.67 0.50 0.83 1.00
Recall (negative case) 0.43 0.29 0.43 0.71 0.71
F1-Score (negative case) 0.60 0.40 0.46 0.77 0.83
Precision (positive case) 0.89 0.86 0.88 0.94 0.94
Recall (positive case) 1.00 0.97 0.91 0.97 1.00
F1-Score (positive case) 0.94 0.91 0.89 0.95 0.97
Overall Accuracy 0.90 0.85 0.82 0.92 0.95
Macro Avg Precision 0.94 0.76 0.69 0.89 0.97
Macro Avg Recall 0.71 0.63 0.67 0.84 0.86
Macro Avg F1-Score 0.77 0.66 0.68 0.86 0.90
Weighted Avg Precision 0.91 0.83 0.81 0.92 0.95
Weighted Avg Recall 0.90 0.85 0.82 0.92 0.95
Weighted Avg F1-Score 0.88 0.82 0.81 0.92 0.95
Total Samples (Support) 39 39 39 39 39

It presents a comparative analysis of five traditional learning models—LogisticReg, Support Vector Classifier, K-Nearest
Classifier, RF & DT—based on standard classification metrics. Among these, the Random Forest model consistently
outperformed the others across all key indicators. It achieved the best accuracy (95%), macro F1-score (0.90), and weighted
F1-score (0.95), demonstrating excellent balance in precision and recall, especially for the positive class (class 1), which
is critical in medical diagnosis. In contrast, SVM and KNN showed relatively lower recall and F1-scores for the minority
class (class 0), indicating their limitations in handling class imbalance. Decision Tree also performed strongly, with an
accuracy of 92% and a macro F1-score of 0.86. While Logistic Regression achieved a perfect precision for class 0, its low
recall (0.43) suggests that it misclassified several negative cases. Overall, the Random Forest model demonstrated the most
reliable and robust performance, making it the most suitable choice for the classification task in this study.
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The Logistic Regression model exhibited high recall but lower precision for the healthy class, indicating a tendency to
classify more patients as positive. In contrast, Random Forest and Decision Tree sustain a better balance between sensitivity
and specificity. The confusion matrices revealed that false positives and false negatives minimized in the tree-based models,
which is critical in medical diagnosis where incorrect classification may delay treatment or cause unnecessary stress.

ROC Curve Comparison
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Figure 6: : Visualization of evolution curve for PK based in SL models

ROC curves were also plotted for each model, showing that Random Forest achieved the highest AUC value, indicating
strong discriminative power. These results suggest that ensemble-based approaches, especially Random Forest, are more
robust in handling complex, nonlinear features often present in clinical voice data.

30

True label

Predicted label

Figure 7: Evolution metrics for PK prediction
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Evolution metrics play crucial role in model building and as per our study, matrix provides insight into how well a
classification model is performing. In this case, the model is predicting two classes: 0 and 1. The matrix shows that the
model correctly predicted class O five times and class 1 thirty-two times. However, it made two errors by predicting class
1 when the true class was 0, and it made no mistakes predicting class 0 when the true class was 1. This is perfect for crucial
tasks, like medical diagnosis or fraud detection because the model does not negative anything incorrectly. Overall, the
model has an accuracy of 94.87% which suggests that in a majority of examples, it predicted what actually happened. The
precision, measuring how many positive predictions actually turned out to be true in reality is 94.12% and the recall that
describes what percentage of all actual positives was correctly identified equals \[Recall= 100%\]. The F1 score is 96.97%
(which balances recall & precision). These results indicate that the model is doing better, in particular to detect class one
correctly and not missing any true positives.

In conclusion, the results show that machine learning models applied to well-organized clinical datasets can perform within
high accuracy for detecting PD at an early stage. This study also emphasizes the importance of standardizing features,
evaluating and visualize a model correctly to maintain the performance and interpretability of Al-driven healthcare systems.

7. CONCLUSION

According to the evaluation matrix and curve analysis, we can tell that the Random Forest model has the highest overall
performance among all of our models. Though the confusion matrix clarifies that this model is acting few wrong with
perfect positive detection and only 2 miss-predictions. To hear from all survey respondents (n = 404) about how accurately
and reliably they believe the pricing policy ever predict local market prices. Furthermore, its ROC curve demonstrated a
largest Area Under the Curve value of 0.93, which means it presents an excellent performance establishing different
threshold levels to separate both classes (Fig. The other models, e.g., DT and LR also did wellbut not as precise and
consistent as the KNN model. Hence Random Forest turns out to be the best Model for doing this classification task which
will give best predictive and can run successfully in real time also.

In future, this study could be extended by including multi-modal clinical data for instance handwriting or gait or imaging
to enable further better diagnostic accuracy. Future efforts can further benefit from using deep learning models with raw
voice signals to automatically extract richer features. Incorporating things like explainable Al (e.g. SHAP or LIME) can
further promote model transparency and overall clinical adoption. Early detection and remote screening: These tools may
potentially increase detection rates. The generalization and real-world applicability of the model could be enhanced by
increasing the dataset with an extended spectrum of populations in more languages.
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