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ABSTRACT

Heart disease is a major global health concern affects the heart and blood arteries like arrhythmias, heart failure, and
coronary artery disease. Heart diseases are the leading cause of the severe mortality rate worldwide for both men and
women. Early detection of heart disease plays a vital role for timely treatment and continuous monitoring by healthcare
providers, and reducing mortality rates. Numerous conventional machine learning methods are developed to identify the
heart disease over the decades. However, these models faced the challenges of accurate prediction with minimal time
consumption. In order to enhance the heart disease prediction accuracy, a novel method called Spline Regressive Quadratic
Emphasis Boosting Classifier (SRQE-Boost) model is proposed. The main aim of proposed SRQE-Boost model is to
perform the heart disease prediction through the significant feature selection and classification to minimize the time as well
as the space consumption. The proposed SRQE-Boost model comprises four processes, namely data acquisition,
preprocessing, feature selection and classification. The data acquisition process is the first step for predicting heart disease
with large volume of patient data collected from the input dataset. After data acquisition, preprocessing is carried out to
minimize the time as well as memory consumption. During data preprocessing, missing data handling using linear spline
interpolation method and outlier removal based on Peirce criterion are carried out to organize the dataset into a suitable
format. Followed by, feature selection process is employed using factor regressive analysis to select the relevant features
to improve the heart disease prediction by minimizing the dimensionality of the dataset. Factor regressive analysis is a type
of statistical analysis used for data analysis through measuring the relationships between features and the target based on
Tanimoto Similarity Index. Finally, Quadratic Discriminant Emphasis Boosting ensemble classifier is employed for
predicting the heart disease presence or absence with the selected features. In this way, accurate heart disease prediction
results are observed with minimal time consumption. Experimental evaluation is carried out on performance metrics like
accuracy, precision, recall, F1 score, specificity, AUC, MCC, Prediction time, memory consumption, with respect to
number of data samples and features. Quantitative analysis results indicate that the proposed SRQE-Boost model achieved
better accuracy in disease prediction, and minimizes time as well as memory consumption compared to existing methods.

Keywords: Heart disease prediction, linear spline interpolation method, Peirce criterion, factor regressive analysis,
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1. INTRODUCTION

Heart disease, also known as cardiovascular disease (CVD), includes a range of conditions affecting the heart and blood
vessels, heart failure, arrhythmias, and it leading cause of death worldwide. Reliable and early forecasting of heart disease
is crucial for efficient patient management. Accurately heart disease prediction is crucial for determining efficient cardiac
treatment options as the volume of data grows exponentially. Application of different machine learning algorithms has
been developed for enhancing the results in predicting the risk of heart disease, to improve clinical decision-making.

A Logistic regression (LR) machine learning model was developed in [1] based on Boruta feature selection model with the
aim of accurately detecting the heart disease. However, the method failed to apply on a diverse large volume of heart
disease dataset with more instances and attributes. A stacking-based classification model [2] with firefly optimization
algorithm was designed to enhance the accuracy of heart disease prediction. However, the designed algorithm failed to
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find the global optimum feature.

A quantum-enhanced machine learning model was introduced in [3] for heart disease prediction. The designed model
reduces the training time but it experiences errors during the learning process. Two supervised learning-based machine
learning techniques were introduced in [4] for prediction of heart disease. But the model failed to enhance the performance
of precision during heart disease prediction. An ensemble learning algorithms integrated with explainable AI model was
developed in [5] to enhance the sensitivity and specificity in heart disease prediction. But designed model failed to enhance
its disease predictive performance when applied to a large volume of patient data. A hybrid deep learning algorithm was
designed in [6] for heart disease detection with large data analysis using Recursive feature elimination method. However,
the recursive feature elimination model was more time consuming especially for large dataset. An advanced boosting
ensemble technique was developed in [7] for the prediction of cardiovascular diseases using correlation feature-based
selection. But the correlation-based feature was not effectively detecting the linear relationship between the features. A
dual-stage stacked machine learning (ML) algorithm was designed in [8] for heart disease risk prediction. However, the
efficient feature selection algorithms were not deployed for cardiac disorders prediction using the larger instances of a
dataset. An improved explainable learning-based technique was designed in [9] for heart disease prediction through the
integration of data normalization and feature selection. However, the precision evaluation performance was not addressed

A hybrid deep learning model was introduced in [10] for coronary heart disease prediction using discriminative features
extraction with minimal computation cost. However, it failed to use efficient computational techniques to improve the
model performance to accurately and effectively prevent the heart disease. A quantum-behaved particle swarm optimization
(QPSO) algorithm was designed in [11] to determine the optimal feature for heart disease risk detection by transforming
nominal data into numerical data and applying effective scaling techniques. However, it did not focus on selecting the more
efficient features for accurately predicting the heart disease severity level. The machine learning algorithm was designed
in [12] for more accurate heart disease predictions. However, the performance of time complexity in heart disease risk
prediction was high. Machine learning algorithms were developed in [13] to improve the performance of timely accurate
heart disease diagnosis. However, it did not apply the efficient feature selection algorithms to reduce the complexity of the
heart risk prediction. A novel artificial neural network (ANN) was developed in [14] for heart disease detection using
features extraction. However, it failed to improve accuracy by enhancing sensor performance and sensitivity. A new self-
attention-based transformer model was introduced in [15] to enhance cardiovascular risk prediction by effectively modeling
complex data. However, the model failed to improve its performance, especially when dealing with limited labeled data.

1.1 Key contributions
This section revolves key contributions SRQE-Boost model are outlined below:

To enhance the heart disease prediction, a novel SRQE-Boost model has been proposed by integrating data preprocessing,
feature selection and classification.

To minimize the feature selection time, a SRQE-Boost model method has performs data pre-processing and feature
selection. The preprocessing step includes missing data handling and outlier data removal using spline interpolation method
and Peirce criterion method respectively. Tanimoto indexive factor regressive analysis is employed to select the relevant
features and remove the other irrelevant features to improve the heart disease prediction by measuring the relationships
between features and the target. This process also reduces the memory consumption

To improve the accuracy of disease prediction, Quadratic Discriminant Emphasis Boosting ensemble classifier is employed
with a set of optimal features. The stacking method provides accurate classification output and minimizes the error.

Finally, a comprehensive evaluation is carried out to assess the performance of the heart disease prediction using various
metrics and comparing it to other classification methods.

Organization

This paper is organized into different sections as follows: Section 2 provides a review of related works in heart disease
prediction. Section 3 introduces the proposed SRQE-Boost model, including a detailed explanation with clear diagram.
Section 4 describes experimental settings and dataset description. Section 5 evaluates the performance of the proposed
SRQE-Boost model in comparison to existing methods using various metrics. Finally, Section 6 presents the conclusions
of the paper.

2. RELATED WORKS

A hybrid model was developed in [16] to enhance model accuracy for effectively detecting cardiovascular disease by
selecting the highly relevant features. However, it failed to focus on applying a large datasets to enhance the efficiency of
the model. A scalable machine learning-algorithm was developed in [17] for early cardiovascular disease prediction based
optimal feature selection. The Fast Correlation-Based Filter Solution (FCBF) was employed from large-scale datasets for
identifying relevant features and improving the performance of algorithms. Though the FCBF model increases the
accuracy, time efficient features selection was major issues. A chi-square based feature selection was developed in [18]
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with the aim of cardiovascular disease detection. But the designed algorithm provided the insignificant results when dealing
with large samples. A multidimensional feature engineering and machine learning models were developed in [19] for
accurate heart disease prediction. However, it did not developing the advancement and innovation of medical data analysis
technology. An Explainable Artificial Intelligence (XAI) model was developed in [20] for heart disease classification.
However, it failed to improve the early detection and personalized treatment strategies for heart disease.

An integration of artificial flora optimization algorithm with the SVM algorithm was developed in [21] for efficiently
identifying the most significant features for heart disease prediction. However, it failed to include a data from diverse
populations and incorporating a broader range of clinical and demographic features to improve the performance. A light
gradient-boosting machine algorithm was designed in [22] to enhance its performance and accuracy of the heart disease
prediction. However, it failed to perform the risk factors analysis. =~ An explainable machine learning approach was
designed in [23] to predict heart diseases. However, the model failed to apply the efficient preprocessing models for
enhancing the heart disease prediction performance.

The whale optimization algorithm was introduced in [24] for feature selection and heart disease prediction. But, the
designed algorithm faced the issues relating to high dimensional dataset. Machine learning techniques were developed in
[25] with the aim of detecting the early detection of heart diseases. However, the designed technique failed to enhance the
robustness of the models. A fuzzy logic based expert system was designed in [26] for the prediction and diagnosis of heart
disecase. However, the fuzzy logic system introduced high complexity in heart disease prediction. A hybrid feature
selection model was developed in [27] for effective classification of cardiovascular disease. The models failed to focus on
selecting the most discriminative attributes for disease prediction. A new hybrid ensemble learning approach was
introduced in [28] that integrate multiple machine learning classifiers for heart disease prediction. However, the designed
model failed to improve the accuracy of feature selection. A quantum machine learning model was developed in [29] to
perform multi-class classification of cardiovascular diseases. However, early detection and prediction remained major
challenges. An explainable Al based new deep learning model was developed in [30] for accurate heart disease prediction
using Principal Component Analysis to reduce dimensionality, enhancing model efficiency. However, the time
consumption of heart disease prediction was not reduced.

3. PROPOSED METHODOLOGY

This section describes the proposed methodology aimed at achieving heart disease prediction with minimal time
consumption. To achieve this objective, a novel SRQE-Boost model is developed on a dataset to generate results with
higher accuracy. To enhance the methodology, the input dataset needs to be cleaned, irrelevant information eliminated, and
significant features selected. The improved methodology produces more accurate heart disease prediction results and
superior model performance, as shown in Figure 1.
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Figure 1 Architecture Diagram of the SRQE-Boost model
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Figure 1 above portrays the architecture diagram of the proposed SRQE-Boost model for accurate heart disease prediction.
The proposed SRQE-Boost model includes four fundamental processes namely data acquisition, preprocessing, feature
selection and classification. These four fundamental processes are integrated to further enhance the accuracy of heart
disease prediction with minimal time consumption. Therefore, the integration process of proposed SRQE-Boost model is
explained briefly in the following subsections.

3.1 data acquisition

In the proposed SRQE-Boost model, data acquisition is the fundamental process of gathering the data using cardiovascular
disecase Dataset taken from https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset. By using these
fundamental data acquisition step, the proposed method effectively acquire large volume of patient data for developing
predictive models to perform the heart disease prediction. The dataset consists of 13 attributes and 70000 data samples.
The attribute descriptions are listed in table 1.

Table 1 Attribute Description

S.No Attributes Description
I. ID Patient ID
2. Age Patient age in days
3. Height Patient height in cm
4. Weight Patient weight in kg
5. Gender 1-women, 2-men
6. ap_hi Systolic blood pressure
7. ap_lo Diastolic blood pressure
8. Cholesterol Cholesterol
1: normal

2: above normal

3: well above normal

9. Gluc Glucose
1: normal,
2: above normal

3: well above normal

10. Smoke Smoking
I: Yes

0:no

11. Alco Alcohol intake
1: Yes

0:no

12. Active Physical activity

13. Cardio 1 presence

0 absence

Let us consider the cardiovascular disease Dataset ‘DS’ comprises of patient data a sample ‘DP’ as well as features
{F,, F,, ..., E,, Jare organized in the form of matrix. Therefore, the input matrix with these dataset samples and features are
formulated as follows,
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F F, .. Fy

PD,y, PDy, .. PDy,
M = PDZl PD22 e PDzn (1)
PD,, PD,, .. PD,,

Where, M indicates an input matrix where each column indicates a number of features F = {F,, F,, ..., F,,}, each row
comprises of a number of data samples or patient data or instances ‘PD = {PD,, PD,, ..., PD,}’ respectively.

The proposed SRQE-Boost model performs the data preprocessing tasks to organize the dataset before applying to machine
learning. The data preprocessing step includes two major processes namely missing data as well as outliers’ data within
the input matrix.

The missing data refers to a no data value stored in cells for specific features within a dataset. This problem is handled by
applying the linear spline interpolation method with other known data samples of particular features. A linear spline
interpolation method is a method used to measure the values between known data points through piecewise linear functions.
The proposed interpolation method simply connects adjacent data points with straight lines. These connected straight line
is used to find the new missing data samples.

Let us consider the two adjacent data points coordinates’ (x; , y;)(x;;+1,Yi+1) and the linear spline function is expressed as
follows,
Y=y T2l (x—x) (2)

i+1 i
Where, y denotes a missing data sample, x is the location at which to estimate the missing value. From the above observed
value, the missing data are handled in an accurate manner,

Followed by, the outlier’s data detection and removal process is carried out from the dataset through the Peirce criterion.
It is a statistical method used to determine the two or more outliers within the dataset. It is measured as the absolute
difference between the data and their mean value is greater than the product of the maximum allowable deviation and
standard deviation

Q = |PD; — ul| (3)
Q > Dy * 0 ; Outlier
Otherwise ; no outlier

Q)

Where, PD; denotes the data point, 4 denotes a mean (or average) of the dataset, D,,,, a ratio that defines the maximum
allowable deviation from the mean, o denotes a standard deviation of the dataset. If the determined ‘Q’ value is larger than
theD,, 4, * 0 , then the particular data is said to be a outlier. Otherwise the data is said to be a normal. The outlier data is
removed and the missing data handling approach is employed to fill the data into respective cells. In this way, both missing
data and outlier data handling processes are simultaneously performed. The processing algorithm is given below,

PC={

/I Algorithm 1: Data pre-processing

Input: cardiovascular disease dataset ‘DS, features F = {F,, F,, ..., F,}, patient data samples PD =
{PD,PD,,...,PD,}

Output: Pre-processed dataset

Begin
1. For each dataset ‘DS’ with features ‘F’ do
2. Formulate input vector matrix ‘M’ using (1)
If any missing value in ‘M’ then
Apply linear spline interpolation using (2)
Fill the missing value to the respective cell
End if
For each data samples with neighboring data samples do
Measure the difference between the mean and data samples using (3)
if (Q > Dy, * 0) then

10. Data samples is outlier

A e B
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11. else

12. Data samples is normal
13. Endif
14. Remove outlier data

15. Return (preprocessed dataset)
16. End for

17. End for

End

Algorithm 1 describes the heart disease dataset preprocessing to minimize the time as well as space consumption. Initially,
a number of patient data are collected from the dataset and formulate the input matrix. Subsequently, missing data is
identified and it filled by applying linear spline interpolation method. Once missing values are handled, the issue of outlier
data removal is addressed. Firstly, the difference between the mean and the data samples are determined. If the estimated
difference is lesser than the maximum allowable difference, then the sample is said to be a normal. Otherwise, it is said to
be an outlier data. As a result, the preprocessed dataset is obtained at the output.

3.3 Tanimoto indexive factor regressive analysis based feature selection

With the preprocessed data set, the feature selection process is carried out with the aim of reducing the dimensionality of
the dataset. Dimensionality reduction is a method to minimize the number of features and select the more related features
within a big dataset. This process helps to minimize the computational complexity and challenges in achieving accurate
heart disease prediction. To address this issue, the Tanimoto indexive factor regressive analysis is introduced in proposed
SRQE-Boost model for dimensionality reduction by choosing the more related features. Through the identification of
significant features, this approach helps to make the accurate prediction of heart disease.

Factor regression analysis model integrates factor analysis (minimizing features) and regression analysis
(analyzing relationships). Factor regressive analysis is a type of machine learning technique used for data analysis through
measuring the relationships between features and the target based on Tanimoto similarity index.

Preprocessed

Features F; F,.F: .F
dataset CATES £152: 53 -m

|

Perform factor regression
analysis

Relevant Trrelevant
features features

Figure 2 Flow Process of Feature Selection

Figure 2 flow process of the feature selection using Tanimoto indexive factor regressive analysis for accurate heart disease
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prediction. Let us consider the number of features Fy, F,, ..., F,,, in the given dataset. Then the factor regression analysis is
employed to measure the relationship between the independent variables i.e. features and dependent variable (i.e. target)
as follows,

R=AL, +BE,+C+e (5

Where, R denotes an output of regression, DP;, DP,,DPs,...DP, denotes a number of data samples or instances, 4, B
denotes a regression coefficients, € indicates the error term , C indicates a constant, L,,, denotes a latent factor, F,, denotes
a observed design factors (input features). The latent factors are measured from the relationships between the features and
target. This relationship is measured based on the Tanimoto similarity index as given below,

i (6)

/Z Fi%+ |[ETi*-XF Ty

Where ‘TS’ symbolizes the Tanimoto similarity coefficient, F; denotes an feature, T) denotes a target variable, F}-Z
denotes a sum of the squared score of Fj, T, 2indicates a sum of the squared score of the T, 3. F;Ty denotes a sum of the
product of the paired score of F; and Tj. Therefore, Tanimoto similarity coefficient provides the output ranges from 0 to 1.

TS =

_ { R>T; relevant features
" lotherwise ; irrelevant features

(7

If the regression outcomes ‘R’ exceeds the threshold ‘T’, feature is termed as relevant. Otherwise, the features are
irrelevant. Finally, the relevant features are selected for accurate heart disease prediction and removed the other irrelevant
features from the dataset. The algorithm for Tanimoto indexive factor regressive analysis is given below,

Algorithm 2: Tanimoto indexive factor regressive analysis
Input: preprocessed Datasets ‘DS’, features F = {F;, F;, ..., E,,}, patient data samples PD = {PD,, PD,, ..., PD,;}
Output: select relevant features

Begin

1: Collect the preprocessed dataset as input

2 For each feature * F;’

3 Measure the regression analysis using (5)

4 Measure the similarity using (6)

5. if Y >T) then

6 Features are identified as relevant

7 else

8 Features are identified as irrelevant

9 End if

10. Select the relevant features and remove other features
11. end for

End

Algorithm 2 describes the process of relevant feature selection using Tanimoto indexive factor regressive analysis with the
aim of improving heart disease prediction while minimizing time consumption. The preprocessed dataset is considered as
input for this analysis. Then applying a regression analysis based on Tanimoto similarity coefficient. This similarity
measure distinguishes the relevant and irrelevant features with higher accuracy by means of setting the threshold within
the dataset. Finally, the relevant features are selected and it listed in table 2 for accurate heart disease prediction in
healthcare applications.

Table 2 Selected Features List

S.NO. Selected relevant features
1 Age
2 Gender
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Patient Height

Patient Weight

Cholesterol Levels

Systolic Blood Pressure

Diastolic blood pressure

XX | N LN B W

Glucose level

3.4 Quadratic Discriminant Emphasis boosting ensemble classifier

After the feature selection, classification is performed in SRQE-Boost model for the diagnosis of heart disease using a
Quadratic Discriminant Emphasis Boosting ensemble classifier model with a set of selected features. An Emphasis
Boosting method is an ensemble machine learning algorithm that combines weak classifier to improve strong predictive
performance. It works by sequentially training multiple weak classifiers. A weak classifier provides slightly correlated with
the true classification, while a strong classifier provides the accurate classification of individuals with and without heart
disease. Therefore, the proposed SRQE-Boost model adopts this ensemble approach to effectively distinguish disease
presence or absence, thereby increasing prediction accuracy.

In the contrast to other ensemble method, Emphasis boosting algorithms is used for achieving higher accuracy by focusing
on misclassified or borderline cases. It also improves the model performance, especially when dealing with complex
datasets or imbalanced classes. This Emphasis boosting algorithm produces the final classification output, such as whether
a disease is present or absent.

classification

ﬁ -
Classifier 1 results

Weak | classification class1flcat10n Combme all weak learners _
Classifier 2 _ results results /

Weak | classification clasmﬂcatlon
Classifier k . results ¥

Final strong classification
Disease Disease
presence absence

Figure 3 Schematic Construction of Quadratic Discriminant Emphasis Boost Ensemble Classifier

Figure 3 illustrates the schematic illustration of Emphasis Boost ensemble classifier for prediction the heart disease
presence or absence with higher accuracy and minimum time consumption. The emphasis boosting technique considerers
the training set { PD;, Y;} where X; indicates the selected features with training patient samples and Y; indicates the ensemble
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classification output. First, the ensemble boosting technique constructs ‘k’ number of weak learners Wy, W, W3 ... W, as
Quadratic Discriminant classifier assumes that each class follows with its own mean and covariance matrix.

Let us consider the number of selected features F = {F;, F,, ..., F,,} with patient data samples PD = {PD,, PD,, ..., PD,,}.
First, identify the number of classes in the dataset. Then compute the mean vector for each class as follows,
1
He =~ XL  PDp (8)
Where, p. denotes a class mean vector, n denotes a number of data samples in particular class. Then the class covariance
vector is computed based on mean value using Gaussian function.
1
exp[—0.5 * (PDL' - I‘lC)T (PDi - ,uc)] (9)

T eraot

cv

Where, CV denotes a covariance, d denotes a deviation, y. denotes a mean of particular class, PD; denotes a patient data
samples. With the estimated mean and covariance value, the quadratic discriminant function for particular class is
calculated as follows,

¢ = —3log |CV,| =5 (PD; — )T CV™2 (PD; — ) +log P(c) (10)

Where, ¢f quadratic discriminant function, y. denotes a mean vector for class ¢, and CV; denotes a covariance matrix for

class c, capturing the spread and shape of the data distribution for that class. The first term, — ;log |CV,| indicates models

with large uncertainty or variance. The second term, —%(PDi —u )T CV~Y1(PD; — u,.) indicates the Mahalanobis
distance between the input PD;and the class mean p., effectively quantifying how far p.is from the mean of class. The

final term, log P (c) indicates prior probability of class c. Finally, the classification of data samples is done with the highest
discriminant score.

Z =argmax@y (11)

Where, Z denotes a output of quadratic classifier, argmax denotes a argument of maximum function, ¢, denotes a
quadratic discriminant score. It shows that the patient data samples ‘PD;’ is assigned to the particular class with the highest
discriminant score. In the heart disease classification, the discriminant function ¢y is used to determine whether a given
patient data sample‘PD; belongs to the class indicating presence or absence of heart disease. For each class (i.e. heart
disease presence = 1, heart disease absence = 0), the classifier computes a discriminant score. The patient sample ‘PD; is
then assigned to the class with the highest discriminant score. This process allows the model to make accurate and
predictions whether a patient is probable to have heart disease or not based on their medical data. In this way, the weak
learner classifies the patient’s data samples into disease presence or absence. In order to obtain the strong classification
output, the weak classification results are combined as follows,

Y=3£,2 (12)

Where, Y indicates ensemble classification outcomes, Y.<_, Z; represents weak classification result. For each output,
weights are randomly assigned.

Y=3E.Z00  (13)

Where, ‘ 9;represents weights. The proposed boosting technique utilizes the weighted emphasis function to measure the
error of classification results obtained from the weak learners,

ES = exp [H ((Z{Ll Z; 9; — Y)z -1 - 1L Zi)z)] (14)

Where, ES dentoes a weighted emphasis function, H denotes a weighting constraint (H = 1), Y depicts actual classification
results, ‘Y'X_, Z; Q;” indicates a predicted classification results with weight Q; and without weight ¥'¥_, Z;. From the (10),
by substituting ‘H’ value is 1 and obtain the final strong classification output,

£S = exp (2, 20 0 —¥)'] (15)

According to the estimated error value, the weak learner weight gets updated. By applying a damped least-squares method,
the classification results are obtained by finding objective function i.e. minimum error value.

F = argmin [exp [(Z{-‘zl Z; 9; — Y)z]] (16)

Where, F denotes an output of damped least-squares method, arg min denotes an argument of minimum function. Finally,
the strong learner results with minimum error are considered as the final strong classified result. Based on the classification
results, patients with heart disease presence or absence are correctly detected. The Emphasis Boost classification algorithm
is given below,
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/I Algorithm 3: Quadratic Discriminant Emphasis Boosting ensemble classifier

Input: Selected relevant features F = {F,F,,...,F,}, patient data samples PD =
{PD,,PD,,...,PD,}

Output: Improve the disease prediction accuracy

Begin
/I Initialize the classes c; — disease presence (1) , ¢, — disease absence (0)

1: For each patient data samples with selected features

2. Construct ‘k’ number of weak classifier

3 For each class ‘c’

4 Compute mean vector ‘1.’ using (8)

5 Compute covariance vector ‘CV’ using (9)

6. Compute quadratic discriminant function ‘@’ using (10)

7 if argmax @, then

8 Classify the input samples into disease presence or absence
9 End if

10. End for

11. End

12. Combine the set of weak learner results ‘Y = Y% 7, ¢

13. for each weak learner results ‘Z;’

14. Initialize the weight © 9;’

15. Apply the emphasis function using (14)

16. Find the weak learner results with minimum error using (16)
17. end for

18. Return (accurate heart disease prediction output)

End

Algorithm 3 provided above outlines the step-by-step process of heart disease prediction using Quadratic Discriminant
Emphasis Boosting ensemble classifier. This ensemble technique constructs multiple weak learners using the selected
relevant features. First, weak learners initialize the classification output. For each patient data samples, mean vector and
covariance is computed. Based on the estimated mean and covariance value, Discriminant score is computed. Finally, the
maximum Discriminant score is selected for assigning the input sample to the corresponding class. Subsequently, the results
from these weak learners are combined, and weight values are initialized. The emphasis function is then applied to measure
the error for each weak learner's classification results. Finally, the weak learner with the minimum error is chosen as the
final classification outcome. Based on this classification, heart disease prediction is obtained with higher accuracy.

4. EXPERIMENTAL SETUP

In this section, experimental assessment of proposed SRQE-Boost model and existing LR [1], stacking-based classification
model [2], are implemented in python high level programming language using cardiovascular disease dataset taken from
https://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset. The main aim is to find the presence and
absence of cardiovascular disease (i.e. heart-related disease) in diabetes patients. The dataset consists of 13 attributes and
70000 instances. A cardiovascular disease is a group of disorders of the heart and blood vessels. This dataset is used to
help the healthcare professionals in predicting and preventing the risks of heart disease. There are 13 attributes or features
are related with each patient, which include a various demographic, medical, and lifestyle-related factors for identifying a
cardiovascular i.e. heart disease. The attribute description is listed in table 1.

To perform the experimental evaluation, a random sampling method is applied to select patient data samples from the
dataset. This method ensures that the data samples are chosen randomly, allowing for an unbiased calculation of the
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performance of both the proposed and existing methods. Random sampling is also known as probability sampling method
that involves selecting a random subset of data samples from the population. Based on this approach, the number of patient
data samples ranged from 7,000 to 70,000 across ten different runs. For each run, various performance results are observed
corresponding to the randomly selected patient data samples.

4.1 Implementation scenario

The SRQE-Boost model is experimentally analyzed to measure its performance in heart disease prediction. The evaluation
process involves key steps such as data collection, data pre-processing, feature selection and classification. This assessment
is conducted using the cardiovascular disease dataset. Initially, patient data sample are collected from the dataset is
illustrated in Figure 4.

Cardiovascular_Disease_Data Acquisition

id;age;gender; height;weight;ap_hi;ap_lo;cholesterol;gluc;smoke;alco;active;cardio
0;18393;2;168;62.0;110;80;1;1;0; 1'0

1;20228;1;156;85.0;140;90;3;1;0;0;1
2;18857;1;165;64.0;130; 70'3'1;0;0;0;1
3;17623;2;169;82.0;150;100;1;1;0;0;1;1
4;17474;1;156;56.0;100;60;1;1;0;0;0;0
8; 21914,1,151 67.0;120;80;2;2;0;0;0;0
9;22113;1;157; 0;130;80;3;1;0;0;1;0
12;22584;2;178;95.0;130;90;3;3;0;0;1;1
13;17668;1;158;71.0;110;70;1;1;0;0;1;0
14;19834;1;164;68.0;110;60;1;1;0;0;0;0
15;22530;1;169;80.0;120;80;1;1;0;0;1;0
16;18815;2;173;60.0;120;80;1;1;0;0;1;0
18;14791;2;165;60.0;120;80;1;1;0;0;0;0
21;19809;1;158;78.0;110;70;1;1;0;0;1;0
23;14532;2;181;95.0;130;90;1;1;1;1;1;0
24;16782;2;172;112.0; 80;1;1;0;0;0;1
25;21296;1;170;75.0;130;70;1;1;0;0;0;0
27; 16747,1,158 52.0;110;70;1;3;0;0;1;0
28;17482;1;154;68.0;100;70;1;1;0;0;0;0

Figure 4 Sample Data Collection from Dataset

After data collection, data processing is carried out to handle missing data and outlier data removal for analysis. The original
dataset had a size of 2,873 KB. After completing the preprocessing steps, the dataset size was reduced to 2,338kb due to
the outlier data removal. The outcomes of the preprocessing phase are illustrated in Figure 5.

§ Preprocessed Data = o X

id gender height weight ap_hi aplo cholesterol gluc smoke alco active cardio

18393.0
20228.0
18857.0
17623.0
174740
219140
22113.0
17668.0
19834.0
22530.0
18815.0
14791.0
19809.0
16782.0
21296.0
17482.0
19778.0
21413.0
23046.0
23376.0
16608.0
14453.0
19559.0
18085.0
14574.0
18291.0
23186.0
14605.0
20652.0
21940.0
20404.0
18328.0
17976.0

Figure 5 Preprocessed Dataset

After preprocessing, identifying the most relevant and informative features from a dataset while eliminating redundant or
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irrelevant ones. The goal is to enhance model accuracy, and lower computational time by minimizing the feature space. In
this process, SRQE-Boost model selects optimal eight features as shown in figure 10.

{ Selectrelevant features data - 0 X
age gender height weight ap_hi ap_lo cholesterol glue H
18393.0 ] | i | ! ! |
20228.0
18857.0
17623.0
174740
219140
221130
17668.0
19834.0
225300
18815.0
14791.0
19809.0
16782.0
21296.0
17482.0
19778.0
214130
23046.0
23376.0
16608.0
14453.0
19559.0
18085.0
14574.0
18291.0
23186.0
14605.0
20652.0
219400
204040
18328.0
17976.0

Figure 6 Feature Selection Outcomes

The performance of heart disease prediction is enhanced by identifying the eight most relevant features and eliminating
unnecessary or redundant features. By selecting these eight important features, such as age, gender, patient height, weight,
cholesterol levels, systolic blood pressure, Diastolic blood pressure and glucose, the SRQE-Boost model becomes more
efficient, faster to train, and often more accurate heart disease prediction. These key features are directly correlated to
patient heart conditions and determining the disease risk level. Age is a critical factor for developing heart disease risk due
to the gradual increase of sign in the arteries, higher blood pressure, and other age-related factors. Gender plays a important
role in the risk for heart disease. Men generally have a higher risk of heart disease than the women. The Taller individuals
have different body compositions that affect cardiovascular health,

Patient Weight is used in calculating BM related to the risk of developing heart disease. Overweight’s are at a higher risk
due to high cholesterol levels, high blood pressure, and insulin.

Cholesterol is the most important features of heart disease risk. High levels of cholesterol cause a major cause of heart
attack. Systolic blood pressure is the pressure in the arteries. High systolic pressure (hypertension) increases the workload
on the heart and damages the arteries, leading to a higher risk of heart disease. The diastolic blood pressure measures the
pressure in the arteries between heartbeats. High value of diastolic pressure and glucose levels significantly increase the
risk of heart disease.

Finally, Classification task involves classifying the category or class label such as disease presence or absence with
optimally selected features.
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Disease Presence Data

age;gender;height;weight;ap_hi;ap_lo;cholesterol;gluc;cardio
20228;1;156;85.0;140;90;3;1;1

18857;1;165;64.0;130;70;3;1;1
17623;2;169;82.0;150;100;1;1;1
16782;2;172;112.0;120;80;1;1;1

23046;1;158;90.0;145;85;2;2;1
16608;1;170;68.0;150;90;3;1;1
18291;1;155;105.0;120;80;3;1;1
23186;1;169;71.0;140;90;3;1;1
20652;1;160;73.0;130;85;1;1;1

Disease Absence Data

age;gender;height;weight;ap_hi;ap_lo;cholesterol;gluc;cardio
18393;2;168;62 ;

17474;1;156;56 ;60;1;1;

21914;1;151;67.0;120;80;2;2;

22113;1;157;93.0;130;80;

Figure 7 Classification Outcomes of SRQE-Boost model

5. PERFORMANCE COMPARISION ANALYSIS

In this section, performance of the proposed SRQE-Boost model and existing LR [1], stacking-based classification model
[2] are discussed with various metrics, including feature selection accuracy, precision, recall, F1 score, specificity, AUC,
MCC, prediction time and memory consumption, confusion matrix with different number of data samples.

Prediction accuracy: Prediction accuracy refers to the model's ability to correctly detect the presence or absence of heart
disease. It is a critical performance metric that evaluates the effectiveness of the classification process. The overall accuracy
of the model is mathematically computed using the following formula:

TP+TN
TP+TN+FP+FN

pa= ( ) * 100 (17)

Where, PA denotes an prediction accuracy, true positive ‘TP’ indicates correctly predicted presence of heart disease, true
negative ‘TN’ denotes the correctly predicted absence of heart disease, false positive ‘FP’ represents the incorrectly
predicted presence of heart disease, false negative ‘FN’ represents incorrectly predicted absence of heart disease. It is
measured in percentage (%).

Precision: it refers to the model’s ability to accurately detect the presence of heart disease among all patient samples. The
precision is mathematically computed as follows,

Precision = (TPT:JFP) (18)

Where, TP denotes the true positive, FP represents the false positive.

Recall: it also known as Sensitivity, is a performance metric used to measure a model’s ability to correctly detect the
presence of heart disease. The recall is mathematically calculated as follows,

Recall = ( I ) (19)

TP+FN
Where, TP denotes the true positive, FN represents the false negative.

F1 score: it is a common evaluation metric used in heart disease prediction tasks. It is a measure of harmonic mean of the
precision and recall.

F1 score = (2 " precision*recall) (20)

precisionxrecall

Specificity: it plays a crucial role in heart disease prediction, particularly in reducing false positives. It measures the

model’s ability to correctly identify healthy patients. The formula for computing the specificity is expressed as follows,
TN

TN+FP) @0

Specificity = (
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Where, TN denotes the true negative, FP represents the false positive.

Mathew Correlation Coefficient (MCC): it is a robust statistical analysis that provides a evaluation of a machine
learning model performance by considering all four categories of the confusion matrix such as true positives, false
negatives, true negatives, and false positives. It provides the output value from 0 to 1. The formula for computing the MMC
is mathematically expressed as follow.

MCC = ( (TP*TN)—(FP*FN) ) (22)
= \/(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Prediction time: It is measured as an amount of time taken by the method for predicting the heart disease with respect to
number of input data samples. The overall time consumption is measured as follows,

PT = Y™, PD; » TM(DP) (23)

Where, PT denotes a prediction time based on the patient data samples ‘PD;’ and the actual time consumed in predicting
the heart disease denoted by ‘TM(DP)’. It is measured in terms of milliseconds (ms).

Memory consumption: It refers to as an amount of memory space consumed by algorithm for heart disease prediction. The
overall memory consumption is computed as follows,

MC = Y™, PD; » Mem(DP) (24)

Where, MC denotes a memory consumption based on the patient data ‘PD;’ and the memory space consumed in heart
disease prediction denoted by ‘Mem(DP)’. It is measured in terms of Kilobytes (KB).

Table 3 Comparison of Prediction Accuracy

Number of | Prediction accuracy (%) Prediction accuracy (%)
g:gent (without feature selection) (with feature selection)

Proposed LR [1] stacking-based | Proposed | LR [1] stacking-

SRQE- classification SRQE- based

Boost model [2] Boost classification

model [2]

7000 94.22 88.57 90.71 95.60 89.57 91.14
14000 94.74 88.65 90.55 95.36 89.36 91.08
21000 93.65 88.66 90.41 95.85 89.45 91.12
28000 93.94 88.25 90.26 95.74 89.47 91.45
35000 94.75 88.57 90.32 95.36 89.63 91.63
42000 94.82 88.74 90.14 95.33 89.44 91.74
49000 93.89 87.89 90.36 95.78 89.63 91.36
56000 93.89 88.12 90.74 95.36 89.32 91.74
63000 94.02 88.74 90.65 95.63 89.77 91.33
70000 94.08 88.25 90.65 95.33 89.05 91.21

Table 3 describes the experimental results of disease prediction accuracy with and without feature selection along with the
number of patient data taken in the ranges from 7000 to 70000 taken from the dataset. The disease prediction accuracy is
measured using three methods namely SRQE-Boost model and existing LR [1], stacking-based classification model [2].
The observed performance results show that the accuracy of SRQE-Boost model was higher than the different feature
selection schemes. For each method, ten different performance results were observed and compared. The overall
comparative analysis shows that the disease prediction accuracy using the SRQE-Boost model with feature selection
increased significantly by 7% and 5% compared to methods proposed in [1] and [2], respectively. Similarly, the SRQE-
Boost model without feature selection also demonstrated improved prediction accuracy, with an increase of 6% and 4%
compared to [1] and [2], respectively.
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Number of patient data Vs Prediction accuracy (%)-Without and With Feature Selection

Proposed SRQE-Boost-(without feature selection)

LR with Boruta feature selection[1]-(without feature selection)

FA stacking-based classification model [2]-(without feature selection)
Proposed SRQE-Boost-(with feature selection)

LR with Boruta feature selection[1]-(with feature selection)

FA stacking-based classification model [2]-(with feature selection)

Prediction accuracy (%)
e

@
~

@
v

7000 14000 21000 28000 35000 42000 49000 56000 63000 70000
Number of patient data

Figure 8 Performance Analysis of Prediction Accuracy

Figure 8 illustrates performance analysis of feature selection accuracy using three methods namely SRQE-Boost model
and existing LR [1], stacking-based classification model [2]. As shown in figure 8, the horizontal axis illustrates the number
of patient data ranging from 7000 to 70000, while the vertical axis indicates the performance outcomes of feature selection
accuracy. Among three methods, the performance of SRQE-Boost model is better when compared to the existing feature
section methods. This is because of applying the Quadratic Discriminant Emphasis Boosting ensemble classifier. This
ensemble technique constructs Quadratic Discriminant weak classifier for classifying the patient data into disease presence
or absence. Subsequently, the results from these weak learners are combined and find the best weak learner results with
minimum error. This capability of SRQE-Boost model increases the performance of disease prediction accuracy.

Table 4 Comparison of Precision

Number of | Precision Precision
g:gent (without feature selection) (with feature selection)

Proposed LR [1] stacking- Proposed | LR [1] stacking-

SRQE- based SRQE- based

Boost classificatio | Boost classification

n model [2] model [2]

7000 0.928 0.906 0.915 0.935 0.918 0.931
14000 0.921 0.904 0.911 0.934 0.916 0.921
21000 0.927 0.905 0.909 0.933 0.914 0.922
28000 0.922 0.906 0.912 0.938 0.913 0.92
35000 0.922 0.904 0.908 0.939 0.912 0.923
42000 0.928 0.901 0.909 0.936 0.911 0.921
49000 0.924 0.9 0.911 0.937 0.914 0.924
56000 0.926 0.903 0.908 0.938 0.915 0.919
63000 0.922 0.905 0.91 0.939 0.91 0.92
70000 0.924 0.903 0.908 0.937 0.911 0.919

The comparison of precision without and without feature selection of three different methods namely SRQE-Boost model
and existing LR [1], FA stacking-based classification model [2] is illustrated in table 4. For the better comparison, the
various counts of patient data are taken as input in the ranges from 7000, 14000 ... 70000. For each classification method,
different performance results were observed with respect to number of patient data. The overall results of the SRQE-Boost
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model are compared to the existing methods. The overall comparison results demonstrate that the SRQE-Boost model with
feature selection improves precision performance by 3% and 2% compared to [1] and [2], respectively. Similarly, the
results indicate that the SRQE-Boost model without feature selection increases precision performance by 2% and 1%
compared to [1] and [2], respectively. The graphical illustration of the precision of three methods is shown in figure 9.

Number of patient data Vs Precision-Without and With Feature Selection

Proposed SRQE-Boost-(without feature selection)

LR [1]-(without feature selection) =~ )

stacking-based classification model [2]-(without feature selection)
Proposed SRQE-Boost-(with feature selection)

LR [1]-(with feature selection)

stacking-based classification model [2]-(with feature selection)

poann

Precision

7000 14000 21000 28000 35000 42000 49000

Number of patient data

56000 63000 70000

Figure 9 Performance Analysis of Precision

Figure 9 shows the performance analysis of precision with and without feature selection related to heart disease with respect
to number of patient data samples ranged from 7000 to 70000. Three methods were employed to estimate the precision
using SRQE-Boost model and existing LR [1], stacking-based classification model [2]. As shown in figure 9, the number
of patient data is considered in horizontal axis, while performance of precision results observed on vertical axis. The
evaluation results ensure that the SRQE-Boost model achieved improved precision results compared to the other
classification methods. These improved performances of SRQE-Boost model were achieved due to the application of the
damped least-squares method in emphases boosting ensemble classification method. The method finds the classification
outcomes with minimal error thereby increasing the true positive and minimizing the false positive results in detecting the
relevant and irrelevant features.

Table S Comparison of Recall

Number of | Recall Recall
g::;ent (without feature selection) (with feature selection)
Proposed LR [1] stacking- Proposed LR [1] stacking-
SRQE- based SRQE- based
Boost classification | Boost classification
model [2] model [2]
7000 0.954 0.915 0.929 0.960 0.924 0.935
14000 0.952 0.914 0.928 0.962 0.922 0.934
21000 0.953 0.913 0.927 0.963 0.919 0.935
28000 0.948 0.911 0.929 0.959 0.922 0.936
35000 0.953 0.918 0.931 0.961 0.925 0.937
42000 0.955 0.919 0.929 0.96 0.922 0.935
49000 0.949 0.917 0.928 0.962 0.924 0.936
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56000 0.946 0.919 0.931 0.962 0.927 0.933
63000 0.951 0.92 0.928 0.961 0.926 0.934
70000 0.95 0.922 0.929 0.959 0.925 0.933

Table S illustrates the comparisons results of the recall with and without feature selection versus number of patient data.
The above comparison results demonstrate that the performance of recall is said to be higher using proposed SRQE-Boost
model and existing LR [1], stacking-based classification model [2]. To enable a more comprehensive comparison, varying
sizes of patient data were considered, ranging from 7,000 to 70,000. The comparison of three different methods proves that
the performance of recall with feature selection using SRQE-Boost model is considerably increased by 4% than the [1] and
also improved by 3% when compared to [2] respectively. Likewise, the SRQE-Boost model without feature selection
improves precision performance by 4% and 2% compared to [1] and [2], respectively. The graphical results of recall are
shown in the figure 10.

Number of patient data Vs Recall-Without and With Feature Selection

Bl Proposed SRQE-Boost-(without feature selection)

M LR [1])-(without feature selection)

mmm stacking-based classification model [2]-(without feature selection)
[ Proposed SRQE-Boost-(with feature selection)

[ LR[1]-(with feature selection)

23 stacking-based classification model [2]-(with feature selection)

0.98

Recall

7000 14000 21000 28000 35000 42000 49000

Number of patient data

56000 63000 70000

Figure 10 Performance Analysis of Recall

Figure 10 given above illustrates the performance outcomes of recall with and without feature selection versus the number
of patient data, ranging from 7,000 to 70,000, for three methods namely SRQE-Boost model and existing LR [1], stacking-
based classification model [2]. These methods were employed to evaluate performance of recall in feature selection. The
horizontal axis denotes the number of patient data, while the vertical axis represents recall performance. Among the three
methods, proposed SRQE-Boost model exhibits comparatively better recall performance than [1], [2], respectively. This
is because of the SRQE-Boost model utilizes the ensemble classification method for distinguishing the patient data into
disease presence or absence while improving the true positive and minimizing false negative.

Table 6 Comparison of F1 Score

Number F1 score F1 score
gflt[;atlent (without feature selection) (with feature selection)
Proposed LR [1] stacking- Proposed LR [1] stacking-
SRQE- based SRQE-Boost based
Boost classificatio classification
n model [2] model [2]
7000 0.940 0.910 0.921 0.947 0.920 0.932
14000 0.936 0.908 0.919 0.947 0.918 0.927
21000 0.939 0.908 0.917 0.947 0.916 0.928
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28000 0.934 0.908 0.920 0.948 0.917 0.927
35000 0.937 0.910 0.919 0.949 0.918 0.929
42000 0.941 0.909 0.918 0.947 0.916 0.927
49000 0.936 0.908 0.919 0.949 0.918 0.929
56000 0.935 0.910 0.919 0.949 0.920 0.925
63000 0.936 0912 0.918 0.949 0.917 0.926
70000 0.936 0.912 0.918 0.947 0.917 0.925

The performance comparison of F1 scores with and without feature selection is measured using three different methods
namely SRQE-Boost model and existing [1], [2] are illustrated in table 6. For the better comparison, the various counts of
patient data are taken as input in the ranges from 7000, 14000, 21000 ...70,000. For the different counts of input patient
data, three various F1 score results were obtained as shown in table 6. Different performance results were observed with
different counts of input samples. The overall observed results of the SRQE-Boost model are compared to the existing
methods. The overall comparison results prove that the performance of F1 score with and without feature selection is
significantly improved by 3% than the [1] and also improved by 2% when compared to [2] respectively. The graphical
results of F1 score are shown in the figure 11.

Number of patient data Vs F1 score-Without and With Feature Selection

Proposed SRQE-Boost-(without feature selection)

LR [1]-(without feature selection)

stacking-based classification model [2]-(without feature selection)
Proposed SRQE-Boost-(with feature selection)

LR [1]-(with feature selection)

stacking-based classification model [2]-(with feature selection)

0.98 4

poenn

F1 score

0.88

7000 14000 21000 28000 35000 42000 49000 56000 63000 70000
Number of patient data

Figure 11 Performance Analysis of F1 Score

Figure 11 illustrates the performance results of the F1-score versus number of patient data using three methods namely
SRQE-Boost model and existing [1], [2]. The F1-score performance results were measured based on both precision and
recall. It is evident from these results that the proposed SRQE-Boost model outperforms the existing methods in terms of
F1-score. The application of the SRQE-Boost model enhances both precision and recall during feature selection. This
improvement is achieved due to the effective application of the ensemble classification methods, which leads to a higher
Fl-score.

Table 7 Comparison of Specificity

specificity specificity

(without feature selection) (with feature selection)
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Number of | Proposed stacking- Proposed Stacking-
gz:;ent 1531:((35]?' LR 1] Elaaf:s(ilﬁcation ]SBI(?(?SE_ LR [1] 1(t:,flasses(ilﬁcation
model [2] model [2]
7000 0.858 0.835 0.85 0.877 0.84 0.863
14000 0.857 0.833 0.845 0.875 0.838 0.862
21000 0.862 0.825 0.842 0.88 0.836 0.858
28000 0.859 0.827 0.847 0.879 0.832 0.862
35000 0.858 0.826 0.846 0.876 0.832 0.862
42000 0.859 0.824 0.848 0.874 0.837 0.857
49000 0.854 0.822 0.844 0.873 0.839 0.856
56000 0.859 0.823 0.843 0.877 0.832 0.857
63000 0.852 0.828 0.847 0.874 0.836 0.856
70000 0.853 0.832 0.845 0.875 0.842 0.854

Table 7 describes the performance investigation of specificity with and without feature selection against the number of
patient data, ranging from 7000 to 70000, taken from the datasets. The specificity is measured using three different methods
namely SRQE-Boost model, [1], [2]. The above results indicate that the performance of proposed SRQE-Boost model
achieved better performance than the existing methods. The overall comparative analysis indicates that the proposed
SRQE-Boost model consistently outperforms the existing approaches. Specifically, the specificity showed a 5%
improvement over method [1] and a 2% improvement over method [2], demonstrating the effectiveness of the proposed
SRQE-Boost model with feature selection. Moreover, Specificity improved by 4% compared to method [1] and by 1%
compared to method [2], highlighting the effectiveness of the proposed SRQE-Boost model without feature selection.

Number of patient data Vs Specificity-Without and With Feature Selection

Proposed SRQE-Boost-(without feature selection)

LR [1]-(without feature selection)

stacking-based classification model [2]-(without feature selection)
Proposed SRQE-Boost-(with feature selection)

LR [1]-(with feature selection)

stacking-based classification model [2]-(with feature selection)

0.92 4

0.90 4

goann

e
]
©

Specificity

0.84 4 —

0.82 4

0.80

7000 14000 21000 28000 35000 42000 49000 56000 63000 70000
Number of patient data

Figure 12 Performance Analysis of Specificity

Figures 12 illustrate the performance analysis of specificity with and without feature selection against the number of patient
data, ranging from 7000 to 70000, taken from the datasets. The horizontal axis indicates the number of patient data samples,
while the vertical axis represents performance outcomes of specificity. The experimental results demonstrate that the
SRQE-Boost model achieved higher specificity compared to other two existing SRQE-Boost model, [1], [2]. Various
results were observed for each method with different numbers of patient data in accurately determining the relevant
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features. The overall results show that the SRQE-Boost model method increases the performance of specificity by reducing
the false positives in disease classification process. By detecting the disease classification ensures that the model better
distinguishes negative cases, thereby increasing specificity.

Table 8 Comparison of ROC and AUC Curve

False positive rate | True positive rate
Proposed  SRQE- LR [1] Staclfing-l.)ased
Boost classification model [2]

0 0 0 0

0.1 0.31 0.21 0.26

0.2 0.55 0.32 0.38

0.3 0.67 0.45 0.52

0.4 0.72 0.55 0.62

0.5 0.84 0.63 0.72

0.6 0.89 0.75 0.82

0.7 0.94 0.82 0.88

0.8 0.96 0.86 0.9

0.9 0.97 0.89 0.91

1 0.99 0.9 0.93

Table 8 illustrates the performance comparison of ROC (Receiver Operating Characteristic) and AUC results. In order to
evaluate the performance of ROC using proposed SRQE-Boost model, [1], [2] in the relevant and irrelevant feature
selection. The ROC results were plotted against True Positive Rate (TPR) versus the False Positive Rate (FPR) at various
values settings. The ROC curve for SRQE-Boost model, shows a higher TPR for a given FPR compared to the other
classification algorithms, indicating superior performance in disease prediction.

) Falsa Mﬂ\'l‘fﬂ \_'l True j‘.‘lﬂiiﬁ\l’l rate )

True positive rate
= = o = = = =
i = i m uw wm W

- =e=ROC curve Proposed SROE-Boost-(AUC=0.T1)
L 4= ROC curve LR (AUC=0.59) .
=8—ROC curve Stacking-based classification model [Z]{AUC=0.65)

ol
=

[ 0.4 [ % 0.3 0.4 0.5 0.6 0.7 08 0.9 1
False positive rate

Figure 13 Performance Analysis of ROC and AUC
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Figure 13 illustrate the ROC results of three methods namely proposed SRQE-Boost model, [1], [2]. It determines the
overall ability of the model to accurately distinguish the disease presence and absence. The ROC value ranges from 0 to 1
The Area Under the Curve (AUC) is a performance measurement used to the area under the ROC (Receiver Operating
Characteristic) curve. An AUC value is greater than 0.5 indicates a perfect model that accurately distinguishes between
disease presence and absence, while an AUC of 0.5 suggests that the model performance is no efficient in disease
prediction. AUC values less than 0.5 means that the model performance is poor. In figure 7, the dotted straight line
symbolizes a threshold point along the ROC curve, where the model performance is evaluated. Based on the observed
results, the final AUC values are 0.73 for the proposed SRQE-Boost model, 0.59 for the existing method [1], and 0.65 for
the existing method [2], respectively. These results indicate that all models have very high disease prediction ability.
Therefore, the proposed SRQE-Boost model outperforms the existing [1] [2] methods.

Table 9 Comparison of MCC

Number of [ MCC
patient data
Stacking-based
Proposed  SRQE- | [ ¢ [1] classification model
Boost
(2]
7000 0.847 0.766 0.801
14000 0.905 0.785 0.865
21000 0.902 0.796 0.875
28000 0.933 0.822 0.863
35000 0.95 0.833 0.886
42000 0.936 0.824 0.874
49000 0.945 0.833 0.886
56000 0.911 0.826 0.862
63000 0.923 0.822 0.872
70000 0.936 0.817 0.863

Table 9 describes the experimental results of Mathew correlation coefficient by applying three different methods namely
SRQE-Boost model, [1],[2]. Among three methods, proposed SRQE-Boost model outperforms well in terms of achieving
high MCC results in disease prediction than the other two methods. Let us consider the experimental evaluation containing
7,000 patient data. The proposed SRQE-Boost model demonstrated a notable improvement in MCC, achieving a value of
0.847 during SRQE-Boost model. In contrast, the existing methods [1] and [2] attained MCC scores of 0.766 and 0.801,
respectively. The comparative results clearly show that the proposed SRQE-Boost model consistently exceed the existing
techniques. Notably, it delivered a 13% increase in MCC compared to method [1] and a 6% gain over method [2], highlight
its effectiveness in reducing false positives, false negative and increasing the true positive and true negative.
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Figure 14 Performance Analysis of MCC

Figure 14 illustrates the MCC using three methods namely SRQE-Boost model, [1], [2]. The x-axis represents the number
of patient data ranging from 7000 to 70000, while the y-axis shows the MCC observed in disease prediction using three
different methods. The results indicate that the SRQE-Boost model enhance the overall performance of MCC compared to
[1] and [2]. This higher MCC value help the SRQE-Boost model achieve better balance in predicting both positive and
negative classes. The SRQE-Boost model improves MCC by eliminating noisy or irrelevant features, reducing overfitting,
and ensuring the high disease prediction accuracy.

Table 10 Comparison of Prediction Time

Number of | prediction time (ms) prediction time (ms)
patient data (without feature selection) (with feature selection)

Proposed | LR [1] Stacking- Proposed LR [1] Stacking-

SRQE- based SRQE- based

Boost classification | Boost classification

model [2] model [2]

7000 36.8 45.6 42.5 31.8 37.5 34.8
14000 38.6 48.5 46.3 34.7 42.8 38.7
21000 43.6 50.2 48.6 36.9 45.7 40.2
28000 46.8 52.8 50.2 40.2 47.6 43.6
35000 48.4 55.6 52.6 43.5 50.2 47.2
42000 51.5 60.3 55.8 47.6 53.6 50.3
49000 56.8 65.7 60.3 50.2 56.4 53.8
56000 60.5 68.6 63.5 53.7 60.2 57.6
63000 63.7 72.5 67.2 55.9 63.7 60.2
70000 65.2 74.6 70.5 58.3 65.8 63.7
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Table 10 describes the experimental outcomes of the prediction time with and without feature section versus a number of
patients data collected from the dataset. The feature selection time is measured using three different techniques namely the
SRQE-Boost model, [1], [2]. The observed results indicate that the proposed SRQE-Boost model outperforms well than
conventional feature selection methods. These experimental results of SRQE-Boost model were then compared to the
existing methods. The average value of ten comparison results confirms that the prediction time of the SRQE-Boost model
with feature selection is considerably reduced by 14% and 8% when compared to the existing methods [1] and [2]
respectively. The average of ten comparison trials confirms that the prediction time of the SRQE-Boost model without
feature selection is significantly reduced by 14% and 9% compared to the existing methods [1] and [2] respectively. The
graphical analysis of feature selection time is shown in figure 15.
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Figure 15 Performance Analysis of Prediction Time

Figure 15 illustrates the performance analysis of prediction time with and without feature selection versus the number of
patient data ranges from 7000 to 70000. The graphical plot illustrates the prediction time for all three methods progressively
increased in a linear manner while increasing the number of patient data. Specifically, the prediction time for the SRQE-
Boost model is considerably minimized when compared to the existing methods [1] and [2]. This is due to SRQE-Boost
model method performs the data preprocessing and feature selection to handle the missing data using linear spline
interpolation method. Furthermore, outlier data is identified through the Peirce criterion. These preprocessing stages of
SRQE-Boost model accurately organize the dataset into suitable format. In addition, Factor regressive analysis is used for
measuring the relationships between features and the target based on Tanimoto Similarity Index. This regression function
selects the significant features and removed the others, thereby reducing the time consumption of heart disease prediction.

Table 11 Comparison of Memory Consumption

Memory consumption (KB) Memory consumption (KB)
(without feature selection) (with feature selection)
Number of
patient stacking- stacking-
data Proposed based & Proposed based &
SRQE- LR [1] . . SRQE- LR [1] . .
Boost classification Boost classification
model [2] model [2]
7000 156.8 178.6 165.8 133.5 158.2 145.6
14000 162.2 192.6 175.5 142.5 175.6 158.4
21000 170.6 201.5 182.4 150.8 185.3 162.2
28000 175.8 216.6 192.6 154.7 190.2 170.5
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35000 180.2 224.8 201.2 158.2 195.3 175.8
42000 184.7 232.6 212.6 164.5 205.2 181.2
49000 188.3 245.7 219.7 168.7 209.6 183.5
56000 192.6 252.3 222.6 175.2 213.3 187.6
63000 201.3 259.6 232.4 179.2 217.6 195.8
70000 212.5 262.6 238.2 188.5 220.6 206.2

Table 11 describes the performance analysis of the memory consumption with and without feature selection versus number
of patient data. The numbers of data are taken in the ranges from 7000 to 70000. The memory consumption using the
proposed SRQE-Boost model is considerably reduced than the other two existing feature selection methods. The overall
results of the SRQE-Boost model were compared to the results observed by using existing classification methods [1] and
[2]. The average of these ten comparison results illustrates that the memory consumption using the SRQE-Boost model
with feature selection was considerably minimized by 18% and 9% compared to methods [1] and [2], respectively. In
addition, the average of ten comparison results indicates that memory consumption using the SRQE-Boost model without
feature selection was significantly reduced by 19% and 10% compared to methods [1] and [2], respectively. The two
dimensional graphical analysis of memory consumption is shown in figure 11.
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Figure 16 Performance Analysis of Memory Consumption

Figure 16 given above illustrates the graphical analysis of memory consumption with and without feature selection for
disease prediction with respect to the number of patient data, ranging from 7000 to 70,000. As shown in graph, the memory
consumption increases for all three methods as the number of patient data increases linearly. This improvement is achieved
by removing the outlier data from the dataset using Peirce criterion through the mean and deviation analysis. In addition,
the significant feature selection process of the SRQE-Boost model also removes the irrelevant features columns, thereby
efficiently reduced the storage space.

Table 12 Comparison of Feature Selection

Methods Total number of features Number of selected features
Proposed SRQE-Boost model 13 8

LR [1] 13 10

Stacking-based classification model [2] 13 9
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Table 12 illustrates the comparison analysis of number of features selected from the dataset by applying three different
methods namely SRQE-Boost model, LR [1], stacking-based classification model [2]. From the tabulated results, SRQE-
Boost model accurately selecting the eight most features as more relevant features such as age, gender, patient height,
weight, cholesterol levels, systolic blood pressure, Diastolic blood pressure and glucose level.

14 -
§ 12
=
§ 10 A
= 8-
(=]
5 0
-g 4 - H Total number of features
2 2 ® Number of selected features
0 -
Proposed SRQE- LR [1] Stacking-based
Boost model classification
model [2]
Methods

Figure 17 Performance Analysis of Feature Selection

Figure 17 illustrates the performance analysis of relevant feature selection using three different methods namely SRQE-
Boost model, LR [1], stacking-based classification model [2]. From the observed experimental results, the SRQE-Boost
model outperforms the other existing methods in the relevant feature selection process. As shown in the results, SRQE-
Boost model selected 8 features from the dataset, while the existing methods [1] [2] selected 10 and 9 relevant features for
heart disease prediction, respectively.

Confusion matrix

A confusion matrix serves as a critical evaluation tool in feature selection tasks, particularly for assessing the performance

of the proposed SRQE-Boost model, LR [1], stacking-based classification model [2]. The matrix outlines four key
components such as True Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). By
analyzing the confusion matrix, the strengths and weaknesses of the proposed SRQE-Boost model, LR [1], stacking-based
classification model [2] clearly identified.

Confusion matrix using Proposed SRQE-Boost
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Figure 18 Confusion Metrics Using Proposed SRQE-Boost model
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Figure 20 Confusion Metrics Using Stacking-based Classification model [2].
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Figure 18, 19, 20 presents the confusion matrices generated by three different models SRQE-Boost model, LR
[1], stacking-based classification model [2]. These matrices provide a visual representation of how effectively each model

predicts heart disease risk levels using a dataset of 70,000 samples.
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Spline Regressive Quadratic Emphasis Boosted Ensemble Classifier For Heart Disease Prediction
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Figure 21 Tanimoto Similarity Coefficients Between All the Features for Original Dataset

Figure 21 illustrates the Tanimoto similarity coefficients computed for all the features within the dataset. The Tanimoto
coefficient measures the similarity between two sets, commonly used to evaluate the redundancy or overlap among selected
features. In the context of feature selection, a lower similarity score indicates a more diverse and less redundant set of
features, which leads to better generalization and improved model performance. The proposed method, compared to
existing techniques, demonstrates an optimal balance by minimizing redundant features while retaining more relevant
features.
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Figure 22 distributions of numerical features

Figure 22 illustrates the distribution patterns of numerical features in the given cardiovascular disease dataset. The
distribution graph helps for understanding the range, mean, and deviation of each feature, as well as identifying potential
outliers, skewness, or imbalances in the data. This analysis is essential for data preprocessing and influence the overall
performance of the machine learning model.
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6. CONCLUSION

Heart diseases are a leading cause of death worldwide, making early detection essential for improving the patient health.
In this paper, the SRQE-Boost model is designed for heart disease prediction. The SRQE-Boost model integrates key steps
such as pre-processing and feature selection and classification. Through the data pre-processing of the SRQE-Boost model
reduces the time as well as memory consumption. Additionally, the feature selection process, utilizing the Tanimoto
indexive factor regressive analysis, enhances the feature selection to further reduce the time consumption. Finally, the
Quadratic Discriminant Emphasis Boosting ensemble classifier increases the accuracy of disease prediction. A
comprehensive experimental evaluation was performed using various performance metrics, including prediction accuracy,
precision, recall, F1 score, specificity, MCC, ROC-AUC, confusion matrix, prediction time and memory consumption
across different patient data. The quantitative analysis indicates that the proposed SRQE-Boost model considerably
enhances prediction accuracy while reducing time as well as memory consumption compared to existing approaches
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