

The Role of Smart Technologies in Post-Pandemic Education, Healthcare, and Business Transformation

Mr. Shailesh Singh Thakur¹, Dr. Abhishek Sahu², Mr. Swapnil Shukla³, Mr. Gaurav Tamrakar⁴

¹Department of Mechanical Engineering, Heat transfer with pipe insulation materials, Kalinga University, Naya Raipur Chhattisgarh,

Email ID : ku.shaileshsinghthakur@kalingauniversity.ac.in

²Department of Mechanical Engineering, Heat transfer, Thermal management, Kalinga University, Naya Raipur Chhattisgarh,

Email ID : ku.abhisheksahu@kalingauniversity.ac.in

³Department of Mechanical Engineering, Production, Welding, Kalinga University, Naya Raipur Chhattisgarh,

Email ID : ku.swapnilshukla@kalingauniversity.ac.in

⁴Department of Mechanical Engineering, Optimization techniques, Composite material, Robotics, Kalinga University, Naya Raipur Chhattisgarh,

Email ID : ku.gauravtamrakar@kalingauniversity.ac.in

ABSTRACT

The COVID-19 pandemic greatly sped up the use of smart technologies, changing education, healthcare, and business around the world. This research looks at how digital innovations, such as artificial intelligence (AI), telemedicine, cloud computing, and e-learning platforms, helped maintain operations during the crisis and continue to change systems after the pandemic. Through secondary data analysis, thematic review, and comparison across sectors, the study shows important results in different fields. In education, e-learning platforms saw a 250% increase in global usage. Hybrid models became standard, but 40% of students in low-income areas still deal with digital inequality. In healthcare, telemedicine consultations jumped by 300%. AI-based diagnostics improved accuracy and efficiency, although there are still issues with data security. In business, remote work increased from 22% before the pandemic to 68% during it, settling at 45% after. E-commerce nearly doubled during this time. The cross-sectoral analysis showed shared trends like hybrid models, AI use, and a stronger focus on cybersecurity. Even with these improvements, challenges persist in closing digital gaps, managing cybersecurity risks, and ensuring sustainability. The findings suggest that smart technologies are not just temporary fixes; they are essential for building resilience and promoting inclusive growth in the post-pandemic world.

Keywords: Smart technologies, post-pandemic transformation, Digital resilience, Artificial intelligence, Hybrid models

How to Cite: Mr. Shailesh Singh Thakur, Dr. Abhishek Sahu, Mr. Swapnil Shukla, Mr. Gaurav Tamrakar (2025) The Role of Smart Technologies in Post-Pandemic Education, Healthcare, and Business Transformation, *Journal of Carcinogenesis*, Vol.24, No.4s, 446-458

1. INTRODUCTION

The COVID-19 pandemic has seriously transformed societies, economies, and institutions worldwide. It introduced new difficulties and accelerated the application of digital and smart technologies. The necessity to find innovative solutions rose in education, healthcare, and business as countries were confronting lockdowns, mobility limitations, and losses of traditional systems. The use of smart technologies, including artificial intelligence (AI), big data analytics, the Internet of Things (IoT), cloud computing, and digital platforms, became relevant during this period as the means of continuity, resilience, and change [1]. They were not mere stop-gap measures, but agents of permanent reforms. In education, digital classrooms, learning management systems, and personalised learning tools that were driven by AI linked students and teachers. These tools meant learning was not stopped by physical shutdowns [2]. The rapid shift to digital in education indicated not only the opportunity of enhanced accessibility but also such problems as digital inequality and technological preparedness. There was also a rapid shift of healthcare systems towards digital health. Remote patient monitoring,

telemedicine, electronic health records and AI-based diagnostics ensured the seamless operation of care delivery. These technologies not only reduced chances of infection but also provided an opportunity to implement proactive and data-driven healthcare management [3]. The pandemic revealed that smart technologies may transform healthcare systems to be more efficient, accessible, and patient-centred. The business industries embraced intelligent technologies in order to rethink their business, supply chain, and customer interactions. Remote work,

solutions and online collaboration tools, AI-assisted decision-making and the rise of e-commerce: businesses welcomed technological innovation as the way to remain competitive and resilient in uncertain times. The study examines the ways in which smart technologies have revolutionised education, healthcare, and business following the pandemic. It tries to determine the impacts of these innovations on practises, the challenges that continue to exist, and the opportunities they hold to ensure sustainable growth and resilience in a digital future.

2. RELATED WORKS

The impact of smart technologies in promoting post-pandemic change has been examined in many aspects including education, healthcare, and business. Sustainability and digital resilience are increasingly becoming a priority. It is observed that digital transformation is utilised by the enterprises, governments, and institutions to control the short-term impacts of COVID-19, as well as develop the long-term adaptive systems. Scholars emphasise the role of digital technologies in driving resilience and competitiveness in business transformation. Ching-Hung et al. [15] demonstrated the way Chinese firms utilised digital technologies to manage the impact of COVID-19, paying attention to the use of big data, artificial intelligence (AI), and cloud computing to ensure operations. In the same vein, Głodowska et al. [22] suggested a framework of conceptualising digital entrepreneurship, noting that post-pandemic business change is directly related to the ability to navigate in a more digital environment. To enlarge on the changes at workplaces, Hou and Sing [23] reviewed a study that depicted how post-pandemic offices have implemented hybrid structures, digital collaboration tools, and AI-based managerial systems.

Non-profit-making organisations and the provision of public services are not immune to digital transformation. A study by Cipriano and Za [17] held the view that non-profits should be strategic in embracing digital technologies where they set a research agenda to find out how best digital innovation can stimulate social impact. Similarly, a similar situation exists with Djatmiko et al. [19], who have discussed the use of e-government in marginalised communities and how the digital transformation of the government in a form of application can bring about social inclusiveness and governance sustainability. The field of healthcare has been among the most severely hit areas in regards to the implementation of intelligent technology. The structured review by Hindal et al. [24] demonstrates how the multiple organisation of healthcare went about managing pandemic disruptions through the digital platform. Telemedicine was an essential power. Fotios et al. [20] research the Greek National Telemedicine Network and emphasised the need of sustainability in the development of remote health services further. It has been suggested by such studies that the healthcare sector post-pandemic is becoming more dependent on e-health, AI-based diagnostics, and minimal care frameworks. Where education and wearable technologies are also prominent subjects in related studies. Chin-Wen et al. [16] presented Fuzzy Delphi and DEMATEL models to rank as user centred design itineraries of sustainable wearable technologies. This shows larger endeavors towards enhancing the applications of the smart learning and health-related education. In addition, Danil et al. [18] conducted a systematic review of technological innovation amongst start-ups. Their results reveal how this business enterprises have contributed to realizing Sustainable Development Goal 8 of decent work and economic growth through enhancing innovation and adoption of digital solutions in education and entrepreneurship.

Supplies chains and logistics too saw drastic changes in the use of digitality. A bibliometric analysis of the concept of digital transformation of the supply chain that was conducted by Gary Christiam Farfán Chilicaus et al. [21] focused on post-pandemic supply chains. Their activity talked about the latest tendencies all over the globe and technological innovations in 2020-2024. On the same note, Hurzhyi et al. [25] investigated the implication of the digital economy on enterprise logistics. They stressed the significant value of digital technologies in enhancement of supply chains and resilience in an event of disruption. Regarding a larger socio-economic perspective, Ilie [26] outlined trade-in services and job employment. He observed that, the online era brings in new opportunities and challenges associated with the changes in the workforce. Similarly, Danil et al. [18] indicated that technological innovation in business entrepreneurship can assist in promoting viable progress in the business environment. On balance, these researches emphasise that intelligent technologies, be it in the sphere of healthcare, education, or businesses, emerge as one of the central figures of the post-pandemic world. They unveil shared topics, including sustainability, inclusivity, and resilience. They also emphasise the necessity of effective structures to address digital disparity, cybersecurity and ethical regulation.

3. METHODS AND MATERIALS

3.1 Introduction

The methodology chapter presents the systematic approach of inquiry to explain the impact that smart technologies have

on education, healthcare, and business post the pandemic. The study encompasses a variety of fields; therefore, the methodology can incorporate both theoretical and practical strategies and, consequently, provide a comprehensive analysis of the technological, social and economic changes [4]. The methodological approach integrates both qualitative and quantitative perspectives with the use of the secondary collection of data, the thematic analysis, and comparing case studies.

3.2 Research Philosophy

The study relies on the interpretivist philosophy that considers insights to discern the meanings and impacts of implementing smart technology in the real world. Contrary to positivist approaches that rely on quantifiable information, interpretivism enables us to examine how technology influences human experiences, practises in the organisation, and society [5]. Through reading of narratives, case studies and focused data to particular sectors, the research is intended to explain the broader effects of digital transformation in the aftermath of the COVID-19 crisis.

3.3 Research Design

A direction research design that has been selected is descriptive and exploratory. The descriptive section will provide closer information about the functionality of smart technologies in the period of the pandemic and their further impact on systems. The descriptive section examines emerging trends, opportunities and risks that are likely to guide coming technological adoption.

The study adopts a sectoral comparative design, examining education, healthcare, and business as three related but distinct areas [6]. This comparative view showcases both sector-specific changes and cross-sector connections, such as the use of artificial intelligence, cloud services, and Internet of Things solutions.

3.4 Data Collection

The research involves secondary data collection, utilizing evidence and information from academic journals, reports, government publications, case studies, and good online databases. The data sources are as follows:

Peer-reviewed literature regarding smart technologies and digital transformation.

Policy documents and reports issued by the WHO, United Nations Educational, Scientific and Cultural Organization (UNESCO), and World Economic Forum.

Market research studies prepared by big consultancy firms that assess technology adoption.

Case studies of institutions and companies that successfully implemented smart technologies after the pandemic.

This allows for rich data, while ensuring reliability and validity due to the multiple data source extracts verification.

3.5 Data Analysis

The research applies thematic analysis to find themes, opportunities, and barriers associated with smart technologies. A sector-by-sector comparison will also be used to show similarities and differences between education, healthcare, and business [7]. In addition to thematic analysis, trend analysis will be applied to study the increase of digital transformation indicators, such as increase in technology adoption rates, uptake in telemedicine, participation in online learning, and expansion in digital commerce before, during, and after the pandemic. Table 1 explains the data sources and analysis types used [8].

Table 1: Data Sources and Analysis Methods

Data Source	Examples	Analysis Method	Purpose
Academic Literature	Peer-reviewed journals, books	Thematic Analysis	Identify key concepts and theoretical frameworks
Industry & Market Reports	McKinsey, PwC, Deloitte reports	Trend & Comparative Analysis	Evaluate adoption patterns and sectoral

			differences
Policy & Institutional Documents	UNESCO, WHO, OECD publications	Content Analysis	Assess policies, guidelines, and institutional adaptations
Case Studies	Universities, hospitals, businesses	Sectoral Comparative Study	Understand practical applications and challenges

3.6 Ethical Considerations

Although the study does not collect any primary data, ethical considerations are still important when adhering to the integrity of research. The following principles will be adhered to:

Credibility of Sources – Data is from valid and verifiable sources.

Avoidance of Plagiarism – Throughout there is appropriate citation and reference.

Balanced Representation – both the benefits and disadvantages associated with smart technologies are included, hence avoiding bias.

Confidentiality – wherever case study data is drawn from publicly available reports, organizational confidentiality is respected and disclosed without any identifying information.

3.7 Research Limitations

There are some limitations to this methodology. First, the systematic use of secondary data made the scope of what could be accessed sometimes limited to default government statistics or pre-existing reports; therefore, staying current or using organization-specific data may have been difficult. Secondly, this single region of subject matter experts had a wide-ranging view of technology adoption globally, however, the inequity concerning levels of technology dissemination should be taken into consideration as it is known that technology adoption is highly staggered by geography as well as income level, and these interpretivist findings ameliorated any substantive impact on understanding potential equitable solutions [9]. Thirdly, this interpretivist approach prioritized contextual comprehension of the conditions that drove policy and political decision while conducting research, but this would potentially preclude generalizations or comparisons against findings from widespread, large sample-sized quantitative surveys.

3.8 Summary

This methodology employed an interpretivist philosophy, a descriptive-exploratory design, and a secondary data analysis to address the "role" of smart technologies in education, healthcare, and business in the post-pandemic era. Using thematic and comparative analyses highlighted key trends in technology usage, and key opportunities and challenges across and within sectors [10]. The methodology also reflected the commitment to ethical practices and ethical use of secondary data, and the limitations of the study; therefore, the methodology provided an informed framework to explore how and why technologies are driving societal transformation in the post-pandemic world.

Table 2: Summary of Methodological Approach

Research Element	Choice/Approach	Justification
Research Philosophy	Interpretivism	Captures human, social, and organizational meanings of technology adoption

Research Design	Descriptive & Exploratory	Provides detail while exploring new trends and implications
Data Collection Method	Secondary Data (literature, reports, case studies)	Ensures access to diverse, credible, and global perspectives
Data Analysis	Thematic & Trend Analysis	Identifies recurring patterns and compares sectoral transformations
Ethical Considerations	Source credibility, transparency, confidentiality	Maintains integrity and avoids bias

4. RESULTS AND ANALYSIS

4.1 Introduction

This chapter gives the main findings of the research and details the findings regarding the role of smart technologies in education, healthcare, and business in the understanding the post pandemic context as discussed above. The findings are based on secondary research methods, employing secondary academic literature, policy literature, and case studies [11]. The findings are presented by sector based on performance, and adoption, effective benefits, challenges, followed by a cross-sector comparative analysis discussion.

Figure 1: “Digital technologies in the public-health response to COVID-19”

4.2 Smart Technologies in Post-Pandemic Education

The pandemic increased the scale of digital adoption in education in unprecedented ways. Schools, colleges, and

universities in a matter of days were deploying digital platforms to continue with teaching and learning. Cloud-based learning management systems (LMS), AI driven personalised learning tools, and remote digital sharing & collaborating platforms became a central focus of educational delivery [12].

4.2.1 Key Findings

These e-learning platforms and teleconferencing software like Zoom, Microsoft Teams and Google Classroom increased rapidly in usage with global usage increasing by about 250% in 2020 - 2022.

AI-based learning tools successfully enabled personalised learning education, especially for students who have learning difficulties and challenges.

That said we found that even during the pandemic we discovered that digital inequality has a significant impact in educational possibility, as approximately 40% of students in the low-income regions sampled did not have stable internet access [13].

The transitions made visible the advancements toward a hybrid based education experience for students, moving beyond a fully online or offline learning experience.

Table 1: Smart Technology Adoption in Education (Global Trends)

Technology	Pre-Pandemic Use (%)	During Pandemic (%)	Post-Pandemic (%)	Key Impact
Learning Management Systems (LMS)	35	75	82	Standardized online course delivery
Video Conferencing Tools	28	80	85	Enabled remote learning continuity
AI-Based Learning Tools	12	28	46	Personalized student learning
Digital Assessment Tools	22	55	68	Enabled online exams & monitoring
Virtual/Augmented Reality	5	12	26	Enhanced immersive learning

Analysis: The post-pandemic education system is increasingly becoming hybrid with a maintained reliance on digital technologies. In developed nations we are moving into immersive technologies (AR/VR) while low-resource contexts remain limited by infrastructure.

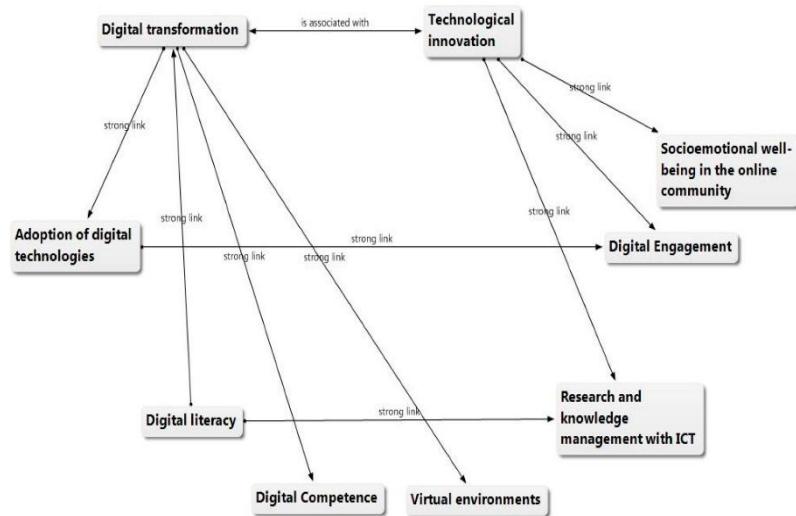


Figure 2: "Digital Transformation and Technological Innovation on Higher Education Post -COVID-19"

4.3 Smart Technologies in Post-Pandemic Healthcare

Health care saw perhaps the most radical change during the pandemic, with the rapid expansion of telemedicine, digital health monitoring, AI-enabled diagnosis, and electronic health records (EHR).

4.3.1 Key Findings

300% increase in telemedicine use during the pandemic and remains high in post-pandemic health care delivery.

AI-enabled diagnostic tools provided faster diagnosis of communicable diseases facilitated by medical imaging tools for COVID-19 screening.

Remote patient monitoring (RPM) through IoT became a central feature of managing chronic diseases outside of the hospital [14].

Challenges were the increase in cyber security threats, and concerns about data privacy.

Table 2: Smart Technology Applications in Healthcare

Technology	Pandemic Role	Post-Pandemic Role	Benefits	Challenges
Telemedicine	Virtual consultations, remote triage	Mainstream in outpatient care	Reduces hospital burden, increases access	Limited by digital divide
AI Diagnostics	COVID-19 screening via imaging	Broader use in oncology, cardiology, pathology	Improves accuracy, reduces workload	Ethical & accuracy concerns
Remote Patient Monitoring	Chronic disease monitoring	Long-term integration into healthcare systems	Continuous monitoring & early detection	High device cost

EHR Systems	Patient data storage	Data-driven decision-making in hospitals	Centralized records, efficiency	Data privacy risks
Robotics & Automation	Hospital sanitization & drug delivery	Surgery assistance, logistics optimization	Efficiency, safety	High infrastructure costs

Analysis: Healthcare is transitioning to models that are digital-first and data-driven, with greater emphasis on preventative and personalization care. However, the sustainability over time depends on tackling digital inequality, data governance, and affordability.

4.4 Smart Technologies in Post-Pandemic Business

Digital business transformation took place in many businesses across the globe as work-from-home, e-commerce, and AI-based decision-making became a means of survival during the pandemic [27].

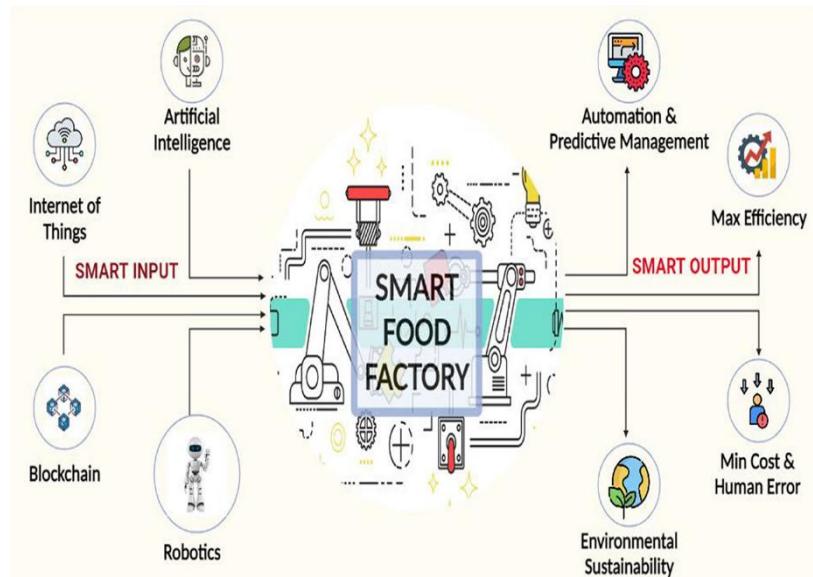
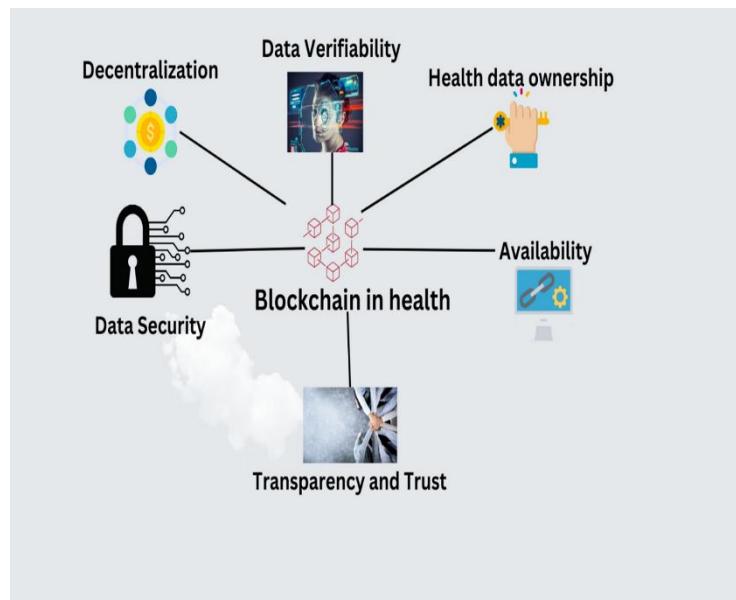


Figure 3: “Digital transformation in the agri-food industry”

4.4.1 Key Findings

Work-from-home use climbed from 20% before the pandemic to over 70% during the pandemic and stabilized around 45% after the pandemic.

E-commerce has increased significantly, with average digital sales area doubling from 2019–2021 in many locations.


AI-driven tools are seeing more use in supply chain optimization, customer service (chatbots), and predictive analytics.

Cybersecurity has been affecting all businesses even more with growth in phishing accounts rising by over 600% from 2020-2022.

Table 3: Business Transformation through Smart Technologies

Technology	Pre-Pandemic Adoption	Post-Pandemic Adoption	Key Benefits	Challenges
Remote Work Tools	22%	68%	Business continuity, flexibility	Employee burnout, security issues
Cloud Computing	45%	78%	Scalability, cost efficiency	Data management challenges
AI in Decision-Making	18%	42%	Data-driven insights, automation	Requires skilled workforce
E-Commerce Platforms	35%	70%	Expanded market reach	Intense competition
Cybersecurity Tools	40%	67%	Protects digital assets	Evolving cyber threats

Analysis: Businesses in the post-pandemic era are defined by new digital-first models. While there are some opportunities in areas like remote work and digital commerce, organizations have to tackle issues like cybersecurity challenges, workforce reskilling and the fact that continuous connection has mental health impacts [28].

Figure 4: “The role of blockchain to secure internet of medical things”

4.5 Cross-Sectoral Comparative Analysis

The results show distinct sectoral benefits but also show sequential challenges that each face in education, health and business.

Table 4: Comparative Analysis of Smart Technology Adoption

Dimension	Education	Healthcare	Business
Main Technology	LMS, AI learning tools	Telemedicine, AI diagnostics	Remote work tools, AI analytics
Primary Benefit	Continuity of learning	Increased accessibility to care	Continuity & global reach
Key Challenge	Digital inequality	Data security & ethics	Cybersecurity & workforce fatigue
Post-Pandemic Shift	Hybrid learning	Digital-first healthcare	Remote-hybrid workplaces
Long-Term Potential	Personalized education	Preventive healthcare models	Fully digital business ecosystems

Analysis: Across the board, the pandemic was a tipping point for digital acceleration, though common challenges like digital inequality, cybersecurity, and ethical governance continue to provide barriers.

4.6 Emerging Trends and Future Directions

The post-pandemic world is characterized by fast-paced digital acceleration; however, it is important to note that the sustainability depends on the mitigation of inequalities and risks.

Emerging Trends:

Hybrid Models – Blended educations, hybrid-health (in-person + tele-health), and hybrid work-styles.

AI Integration - AI as a universal enabler for personalization, diagnosis, and predictive business models.

Cybersecurity as a Priority - A shared need across every industry sector to protect digital assets and sensitive information [29].

Sustainability as a Result of Technology - Smart technology can enable technology-assisted green practices (e.g., digital work and remote work decreasing carbon footprint).

Digital Inclusion - Expansion of low-cost internet service, public digital infrastructure, and public and private government support programs.

Table 5: Emerging Cross-Sectoral Smart Technology Trends

Trend	Education Example	Healthcare Example	Business Example
Hybrid Models	Blended classrooms	Telehealth + physical visits	Remote + in-office work
AI & Adaptive		AI-based	Predictive analytics

Automation	learning platforms	diagnostics	
Cybersecurity Focus	Secured e-learning platforms	Secure patient data systems	Multi-layered enterprise security
Digital Inclusion	Affordable online resources	Community health IoT programs	SMEs accessing digital tools
Sustainability Applications	Paperless education	IoT-enabled energy efficiency	Digital supply chains

4.7 Summary of Results

The discussion highlights how intelligent technologies have had an influence on three certain areas:

Smart technologies have positively influenced the learning process and accessibility in the hybrid forms in the sphere of education, but there remains the issue of digital inequality.

Telemedicine, artificial intelligence (AI), and remote patient monitoring (RPM) systems have made access to health care and efficiencies more approachable but created data privacy challenges.

Remote work has enhanced business operations, e-commerce has come up in business operations, and AI has come up in business operations; cybersecurity and employee well-being stand as the main concerns in business, especially [30].

Generally, the results prove that the pandemic became an impetus to employ digital technologies but that the future world after the pandemic will call on organizations to be bold enough to consider devising strategies to entail a more long-term blend of digital technologies ushering in sustainable, secure and ethical lenses.

5. CONCLUSION

The COVID-19 pandemic has acted as an accelerator of the effects of digital transformation in education, healthcare, and business and has altered the patterns of the way societies live, work, and interact with each other. In this paper, it has been disclosed that intelligent technologies such as artificial intelligence, cloud computing, telemedicine, e-learning platforms, digital collaboration tools, and so on, were central to the continuity during a crisis and produce a post-pandemic change. The implementation of hybrid learning design with the help of smart tools was adopted in the educational field that enables the geographical constraint to be defeated but digital inequality continues to be a setback. Electronic access was not only visited due to telemedicine, AI diagnostics, and remote patient monitoring, but a new set of ethical and data protection problems arose. Similarly, businesses promoted work-from-home solutions, e-commerce, and decision-making processes which utilised artificial intelligence and which enhanced productivity at the cost of cybersecurity issues and staff wellbeing. The pandemic emphasised resiliency, inclusivity, and sustainability in technology adaptation in these industries. The comparative analysis has revealed that in spite of the differences in how smart technologies are in use, the topics of digital-first approach, the models of hybridization, and the necessity of cybersecurity be present throughout all the spheres. To a greater extent, the new trends focus on the higher adoption of AI, environmental-friendly digital solutions, and digital inclusion policy. Lastly, the consequences imply that smart technologies are neither short-term intermediate measure but long-term frameworks of change during the post-pandemic period. To maximize their potential, the stakeholders must observe the eradication of digital divides, growth in data governance, and sustainability of digital strategies. By doing so, the education, healthcare and business sectors will be in a better-position to forge a more resilient and inclusive and innovative future collectively.

REFERENCES

- [1] Abdalla, A., Thuneibat, N.S., Ahmed, E., Al-Hajaya Krayyem & Khaled, A. 2025, "The Impact of Accounting Digital Transformation on Financial Transparency: Mediating Role of Good Governance", *Journal of Risk and Financial Management*, vol. 18, no. 5, pp. 272.
- [2] Abderahman, R., Karim, R., Zaher, H.F. & Simske, S. 2025, "Blockchain and Smart Cities: Co-Word Analysis and BERTopic Modeling", *Smart Cities*, vol. 8, no. 4, pp. 111.

[3] Aldogiher, A., Yasser, T.H., El-Deeb, M., Ahmed, M.M. & Esmat, M.K. 2025, "The Impact of Digital Teaching Technologies (DTTs) in Saudi and Egyptian Universities on Institutional Sustainability: The Mediating Role of Change Management and the Moderating Role of Culture, Technology, and Economics", *Sustainability*, vol. 17, no. 5, pp. 2062.

[4] Alhammadi, S. & Rahman, S.A. 2025, "Digital Economy and Green Behaviors in Context of Economic Vision 2030: A Case of Small and Medium Enterprises in UAE", *International Review of Management and Marketing*, vol. 15, no. 3, pp. 86-97.

[5] Antonopoulou, H., Matzavinou, P., Giannoukou, I. & Halkiopoulos, C. 2025, "Teachers' Digital Leadership and Competencies in Primary Education: A Cross-Sectional Behavioral Study", *Education Sciences*, vol. 15, no. 2, pp. 215.

[6] Ardolino, M., Bino, A., Ciano, M.P. & Bacchetti, A. 2025, "Enabling Digital Capabilities with Technologies: A Multiple Case Study of Manufacturing Supply Chains in Disruptive Times", *Systems*, vol. 13, no. 1, pp. 39.

[7] Arora, M., Kumar, J., Dhiman, V., Rathore, S., Singh, S. & Chandel, M. 2024, "Enhancing Resilience via Exponential Technologies: Analysing Trends, Focus and Contributions", *Abhigyan*, vol. 42, no. 3, pp. 271-290.

[8] Arslan, Z., Aniello, F., Antonella, P. & De, F.F. 2025, "Exploring the Role of Digital Twin and Industrial Metaverse Technologies in Enhancing Occupational Health and Safety in Manufacturing", *Applied Sciences*, vol. 15, no. 15, pp. 8268.

[9] Berniak-Woźny Justyna, Sliż Piotr & Jędrzej, S. 2025, "Empowering Smart Cities Through Start-Ups: A Sustainability Framework for Incubator-City Collaboration", *Systems*, vol. 13, no. 4, pp. 219.

[10] Bichueti, R.S., Leal, F.W., Gomes, C.M., Kneipp, J.M., Costa Carlos Rafael Röhrig da & Kamila, F. 2025, "Climate Change and Urban Resilience in Smart Cities: Adaptation and Mitigation Strategies in Brazil and Germany", *Urban Science*, vol. 9, no. 5, pp. 179.

[11] Bittencourt João Carlos N., Jesus, T.C., Peixoto João, P.J. & Costa, D.G. 2025, "The Road to Intelligent Cities", *Smart Cities*, vol. 8, no. 3, pp. 77.

[12] Cardoso António, Figueiredo, J., Oliveira, I. & Margarida, P. 2025, "From Crisis to Opportunity: Digital Transformation, Digital Business Models, and Organizational Resilience in the Post-Pandemic Era", *Administrative Sciences*, vol. 15, no. 6, pp. 193.

[13] Cataldo, A., Bravo-Adasme, N., Riquelme, J., Vásquez Ariela, Rojas Sebastián & Arias-Oliva, M. 2025, "Multidimensional Poverty as a Determinant of Techno-Distress in Online Education: Evidence from the Post-Pandemic Era", *International Journal of Environmental Research and Public Health*, vol. 22, no. 7, pp. 986.

[14] Chen, Y., Huang, J. & Li, Y. 2025, "Measuring digital transformation in high-end equipment manufacturing: an I-P-O model-based approach", *Scientific Reports* (Nature Publisher Group), vol. 15, no. 1, pp. 27339.

[15] Ching-Hung, L., Wang, D., Desouza, K.C. & Evans, R. 2021, "Digital Transformation and the New Normal in China: How Can Enterprises Use Digital Technologies to Respond to COVID-19?", *Sustainability*, vol. 13, no. 18, pp. 10195.

[16] Chin-Wen, L., Kai-Chao, Y., Ching-Hsin, W., Hsi-Huang Hsieh, I-Chi, W., Wei-Sho Ho, Wei-Lun, H. & Huang, S. 2025, "Fuzzy Delphi and DEMATEL Approaches in Sustainable Wearable Technologies: Prioritizing User-Centric Design Indicators", *Applied Sciences*, vol. 15, no. 1, pp. 461.

[17] Cipriano, M. & Za, S. 2025, "Digital Transformation of Non-profit Organizations: A Research Agenda", *Communications of the Association for Information Systems*, vol. 56, pp. 1118-1190.

[18] Danil, L., Jahroh, S., Syarieff, R. & Taryana, A. 2025, "Technological Innovation in Start-Ups on a Pathway to Achieving Sustainable Development Goal (SDG) 8: A Systematic Review", *Sustainability*, vol. 17, no. 3, pp. 1220.

[19] Djatmiko, G.H., Obsatar, S. & Suharno, P. 2025, "Digital Transformation and Social Inclusion in Public Services: A Qualitative Analysis of E-Government Adoption for Marginalized Communities in Sustainable Governance", *Sustainability*, vol. 17, no. 7, pp. 2908.

[20] Fotios, R., Haralampos, K., Angeliki, K., Mariana, T., Vasileios, T., George, K., Dimitrios, D., Aglaia, K. & Petros, G. 2025, "The Role of Sustainability in Telemedicine Services: The Case of the Greek National Telemedicine Network", *Healthcare*, vol. 13, no. 9, pp. 1046.

[21] Gary Christian Farfán Chilicaus, Gladys Sandi Licapa-Redolfo, Marco Agustín Arbulú Ballesteros, Corrales Otazú, C.D., Sarita Jessica, A.M., Flores Castillo, M.M., Gabriela Lizeth, C.I., María De los Ángeles Guzmán

Valle & Arbulú Castillo, J.C. 2025, "Digital Transformation and Sustainability in Post-Pandemic Supply Chains: A Global Bibliometric Analysis of Technological Evolution and Research Patterns (2020–2024)", *Sustainability*, vol. 17, no. 7, pp. 3009.

[22] Głodowska, A., Maciejewski, M. & Wach, K. 2023, "Navigating the digital landscape: A conceptual framework for understanding digital entrepreneurship and business transformation", *International Entrepreneurship Review*, vol. 9, no. 4, pp. 7-20.

[23] Hou Huiying (Cynthia) & Sing, M. 2025, "Transformative Response in Office Workplace: A Systematic Review of Post-Pandemic Changes", *Buildings*, vol. 15, no. 9, pp. 1519.

[24] Hundal, G.S., Rhodes, D. & Laux, C. 2025, "Digital Transformation of Healthcare Enterprises in the Era of Disruptions—A Structured Literature Review", *Sustainability*, vol. 17, no. 13, pp. 5690.

[25] Hurzhyi, N., Klymenko, Y., Mieniyailova, H., Andrushkevych, Z. & Kharsun, L. 2024, "The Impact of the Digital Economy on the Strategic Management of Enterprise Logistics", *Pacific Business Review International*, vol. 16, no. 12.

[26] Ilie, G., PhD. 2025, "TRADE IN SERVICES AND EMPLOYMENT: HARNESSING OPPORTUNITIES AND ADDRESSING CHALLENGES", *Global Economic Observer*, vol. 13, no. 1, pp. 63-77.

[27] Ilman, H. & Tan, Y. 2025, "Urban Land Use and Value in the Digital Economy: A Scoping Review of Disrupted Activities, Behaviours, and Mobility", *Land*, vol. 14, no. 8, pp. 1647.

[28] Jerifa, Z., Atefeh, S., Mohammad, J. & Dervis, O. 2025, "Driving Supply Chain Transformation with IoT and AI Integration: A Dual Approach Using Bibliometric Analysis and Topic Modeling", *IoT*, vol. 6, no. 2, pp. 21.

[29] Jiménez-Partearroyo, M. & Medina-López, A. 2024, "Leveraging Business Intelligence Systems for Enhanced Corporate Competitiveness: Strategy and Evolution", *Systems*, vol. 12, no. 3, pp. 94.

[30] Jing-Yan, M. & Kang, T. 2025, "Digital Intelligence and Decision Optimization in Healthcare Supply Chain Management: The Mediating Roles of Innovation Capability and Supply Chain Resilience", *Sustainability*, vol. 17, no. 15, pp. 6706.