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ABSTRACT 

Recent research on intrusion detection systems (IDSs) in the internet of things (IoT) has explored various models, including 

deep neural networks, classical classifiers, explainable artificial intelligence (XAI), and dimensionality reduction methods 

such as principal component analysis (PCA). However, few studies offer a comprehensive AI pipeline that systematically 

integrate data preprocessing, class imbalance handling (e.g., using the synthetic minority oversampling technique 

(SMOTE)), advanced feature engineering (e.g., PCA and linear discriminant analysis), multimodel selection paradigms, 

and modern XAI techniques. This study fills that gap by proposing a unified IDS framework that integrates these elements 

and introduces generative AI and large language models (LLMs), such as Gemini, to automate dynamic feature extraction 

from unstructured network logs. Data visualization tools like tdistributed stochastic neighbor embedding (t-SNE) and 

Shapley additive explanation (SHAP) are employed to analyze feature distributions before and after dimensionality 

reduction. Experimental results confirm that the SMOTE significantly improves model accuracy, whereas dimensionality 

reduction has limited effect on model performance. Among evaluated classifiers, XGBoost achieves the highest accuracy 

(99.99%). For explainability, TreeSHAP is preferred due to its computational efficiency, and t-SNE visualizations based 

on SHAP values reveal distinct clusters of benign and malicious network traffic. This integration of data processing, 

automated feature extraction using LLMs, model selection, and interpretable machine learning offers a novel approach to 

IoT security. In addition to advancing IDS methodology via robust and transparent decision-making, this study exemplifies 

the potential of integrating automated data engineering and XAI in cyber–physical system research.. 
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1.  INTRODUCTION 

The internet of things (IoT) represents a profound advancement in modern connectivity; it unifies a multitude of 

autonomous devices—from sensors and smart locks to surveillance cameras—within a dynamic digital ecosystem. The 

rapid adoption of IoT technologies, particularly during the COVID-19 pandemic, has led to the widespread deployment of 

IoT-enabled devices that minimize direct human contact in tasks such as door access direct human involvement in opening 

doors. However, it has also expanded the attack surface for cyber threats. Despite its evident societal and industrial benefits, 

the heterogeneous and resource-constrained nature of IoT devices leaves them highly vulnerable to an evolving array of 

cyberattacks, including high-profile malware threats such as Mirai, Troii, and Hakai botnets, which threaten network 

reliability, data security, and operational continuity. Current research primarily employs conventional machine learning 

(ML) models, deep neural networks, and explainable artificial intelligence (XAI) to improve IoT intrusion detection 

systems (IDSs). However, these methods often face challenges related to interpretability, scalability, and high-dimensional 

network traffic data. To address these gaps, this study introduces two novel innovations: (1) the application of t-distributed 

stochastic neighbor embedding (tSNE) for the intuitive visualization and analysis of high-dimensional IoT network packet 

data, enabling the identification of subtle patterns linked to various forms of cyberattacks, and (2) the integration of large 

language models (LLMs) to autonomously extract and contextualize critical features from raw network logs, simplifying 

feature engineering and improving model robustness.  

This article presents an end-to-end IDS pipeline that integrates advanced ML classifiers optimized via rigorous data 

balancing and hyperparameter tuning. We thoroughly assessed classifier decisions by comparing a suite of XAI methods. 

The incorporation of LLMs for feature extraction, coupled with the visualization power of t-SNE, represents a pioneering 

approach for enhancing the transparency and performance of IDSs in IoT ecosystems. This article initiates with an  
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extensive literature review, identifies research gaps, outlines the experimental methodology, and concludes by presenting 

comprehensive results and key insights for developing next-generation, interpretable IDS solutions tailored to IoT 

environments (Figure 1). 

 

 

Figure 1: IoT ecosystem and security intrusion overview.  

2. RELATED WORK  

2.1. XAI  

The opacity of modern ML, particularly deep learning, has prompted research on interpretability. Doshi-Velez and Kim 

[13] emphasized foundational approaches toward interpretable AI and the inherent accuracy–interpretability trade-off. 

Adadi and Berrada [1] systematically classified XAI methods into ante-hoc and post-hoc methods. Popular post-hoc 

techniques, such as local interpretable model-agnostic explanations (LIME) [20] provide localized, modelagnostic 

explanations. Guidotti et al. [18] categorized black-box model explanation strategies relevant to the finance and healthcare 

domains. Explainability is crucial for user trust, as reported by Amarasinghe and Manic [6] in their research on neural-

network-based IDSs, highlighting the need for transparency in critical systems.  

2.2. IDSs in IoT Environments  

IoT proliferation has increased the demand for efficient IDSs. Aung and Min [7] demonstrated that K-means clustering 

effectively identifies network intrusions via unsupervised learning. Alrashdi et al. [4] presented AD-IoT, a supervised 

system achieving high accuracy with low false positives  in detecting network attacks on real IoT data. In smart 

environments, ensemble methods are often preferred over individual models [3]. Integrating SDN further enhances model 

scalability and performance, as exemplified by hierarchical approaches [5]. In addition, edgecentric lightweight IDSs, such 

as Passban [14], have achieved resource-efficient anomaly detection.  

2.3. ML Techniques for Security  

ML-driven security frameworks integrate anomaly detection, and data integrity [8]. For intrusion detection, XGBoost 

excels due to its gradient boosting and regularization abilities [12]. Further, deep learning models effectively capture 

temporal patterns in IoT traffic [16]. To handle traffic variability and class imbalance during intrusion detection, researchers 

have employed unsupervised and dimensionality reduction techniques such as principal component analysis (PCA) [10] 

and the synthetic minority oversampling technique (SMOTE) [17].  

2.4. Privacy, Compliance, and Legal Considerations  

The intensifying scrutiny of regulations, exemplified by the General Data Protection Regulation (GDPR), necessitates 

robust data access and transparency mechanisms. Alizadeh et al. [2] identified gaps between regulatory expectations and 

current technical capabilities. Hausken and Mohr [19] applied the game theory to elucidate information sharing and utility, 

achieving fair and accountable AI system design.  

2.5. Challenges and Research Gaps  

Despite advancements in IoT IDSs, key challenges persist. These include the absence of standardized benchmarks, trade-

offs between model complexity and explainability, and limited generalizability across heterogeneous IoT contexts 

[1,13,14]. Moreover, inherent security vulnerabilities of ML algorithms necessitate the development of models robust 

against adversaries [9]. Notably, gaps in data preprocessing and feature engineering methods for IoT IDSs remain 

insufficiently addressed in current literature.  

2.5.1. Imbalanced Data Handling  

Advanced balancing techniques like the SMOTE and hybrid methods remain underutilized, despite their efficacy in 

mitigating skewed class distributions.  

2.5.2. Algorithmic Sampling  
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Research exploring sampling strategies for class balancing informed by algorithmic or data-driven insights remains limited.   

2.5.3. Dimensionality Reduction  

PCA and linear discriminant analysis (LDA) predominate while nonlinear dimensionality reduction methods like t-SNE 

are seldom employed, despite t-SNE demonstrating advantages in terms of performance.  

2.5.4. Integrated Methodologies  

Existing literature lacks a systematic analysis that jointly considers class balancing, feature selection, and dimensionality 

reduction.  

2.5.5. Challenges in Intrusion Detection in IoT Environments  

Diversity and Scale of Threats: The proliferation of IoT devices has driven an increase in diverse attack types (e.g., 

distributed denial of service, MITM, spoofing, replay attacks), necessitating robust, real-time intrusion classification.  

2.5.6. Resource Constraints  

Owing to stringent resource limitations, IoT applications require computationally lightweight IDS solutions with minimal 

latency.  

2.5.7. Classification Models  

Conventional ML models (decision trees, Naïve Bayes models, and support vector machines (SVMs)) are prevalent; 

however, their evaluation lacks uniformity across studies.  

2.5.8. Deep Learning Techniques  

Deep learning architectures (CNNs, RNNs, and LSTM models) exhibit high performance, with activation and output 

functions (e.g., ReLU and softmax) demonstrating effectiveness for multiclass detection tasks.  

2.5.9. Clustering-Based IDS Approaches  

Unsupervised Anomaly Detection: Clustering algorithms, including LOF, INLOF, COF, BIRCH, and agglomerative 

methods, are increasingly utilized for detecting anomalies in unlabeled data.  

2.5.10. Identified Limitations  

Few studies have reported the comparative assessments of clustering techniques or have employed visual interpretability 

tools like scatter plots.  

2.5.11. Explainability and Interpretability  

Regulatory and Practical Imperatives: Owing to regulatory frameworks (e.g., the GDPR) and the demand for explainable 

predictions, transparent AI models are imperative.  

2.5.12. Interpretability Taxonomy  

Intrinsic methods (e.g., decision trees and linear regression models) are interpretable by design. Post-hoc techniques (e.g., 

LIME and the permutation feature importance technique) provide model-agnostic explanations. Global and local 

explanations address the entire model or individual predictions, respectively.  

2.5.13. Real-Time Constraints  

The feasibility of IDSs like SNORT, BRO, and SURICATA on low-power edge devices is currently being explored, with 

SNORT demonstrating superior efficiency on platforms like Raspberry Pi.  

2.5.14. Hyperparameter Optimization  

Deep learning approaches frequently overlook the systematic tuning of model parameters and network architectures.  

2.5.15. Evaluation Metrics  

Performance metrics adapted for evaluating imbalanced data (e.g., F-score, recall, kappa, and K–S statistics) are 

insufficiently reported.  

2.5.16. Ensemble Methods  

Ensemble classifiers such as AdaBoost and XGBoost garner less attention than linear approaches.  

2.5.17. LLMs in Log Preprocessing  

No current studies on IDSs used in IoT environments have integrated LLMs (e.g., Gemini Flash 2.0) for feature extraction 

from system logs.  
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3.  RESEARCH METHODOLOGY  

Research methodologies encompass the systematic design and execution of investigations, including explicit procedures 

for data collection, analysis, and interpretation. The three key components of every investigation are data collection, data 

analysis, and problem modeling.  

Research is commonly classified based on the nature of used data (qualitative or quantitative), nature of data sources 

(primary or secondary), degree of variable manipulation (descriptive or experimental), and objectives (applied or 

fundamental). Qualitative research focuses on patterns and interpretations, and quantitative research relies on statistical 

analysis and hypothesis testing. While primary research generates data firsthand, secondary research utilizes pre-existing 

datasets. Descriptive research investigates phenomena without manipulating variables; in contrast, experimental research 

involves deliberate intervention. Finally, applied research addresses specific practical problems, and fundamental research 

focuses on advancing theoretical understanding.  

Utilizing the IoT-23 dataset, this study developed a prediction model for intrusion detection in IoT. Hence, by definition, 

this research is secondary, applied, and quantitative. The investigation focused on model explainability, compared LIME 

and Shapley additive explanation (SHAP) algorithms for interpretability analysis, and adopted descriptive research 

strategies. This investigation further involved the analysis of various feature engineering methods and their effect on model 

prediction performance. The methodology involved a systematic evaluation and statistical comparison of various 

techniques, ranging from SMOTE sampling to SHAP and LIME explainability methods, as well as feature extraction from 

network logs. Furthermore, this study incorporated LLMs for feature extraction from network logs.  

Subsequent sections elucidate the proposed research methodology and its underlying rationale.  

3.1. Research Approach Overview  

The main contributions of this study are as follows:  

Identification of the optimal workflow for IDSs in IoT environments.  

Investigation, selection, and comparison of the most effective class-balancing techniques, including the SMOTE as well as 

undersampling, oversampling, and hybrid sampling approaches.  

Comparative analysis of diverse dimensionality reduction and feature selection methods, specifically filterbased, wrapper-

based, and t-SNE techniques.  

Evaluation and comparative analysis of various ML algorithms using multiple performance metrics to identify the most 

effective model.  

Explanation of model predictions using intrinsic and model-agnostic techniques like LIME and SHAP.  

Comparison of the computational time requirements of these explanation methods.  

 

Figure 2: Class of attacks vs. total numbers of network logs.  

Evaluation and utilization of an LLM to identify feature values from a simulated network log.  
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3.2. Data Analysis Approach  

This research employed the IoT-23 dataset [15], and its specifications are presented in Table 1. Figure. 2 shows target 

labels vs. number of network flows recorded.  

  

Table 1: Dataset Specification  

Metric  Value  

Total Number of Data Files  23  

Number of Malicious Captures  20  

Number of Benign Captures  3  

Total Labeled Rows  325 million  

Timestamp of Data  2018–2019  

Target Variable  Label  

  

The dataset, comprising 21 features with both binary and multiclass targets, underwent extensive preprocessing informed 

by exploratory data analysis (EDA). The process included normalization, class balancing, encoding, and data quality checks 

such as handling missing values, removing duplicates, detecting outliers, and addressing multicollinearity using variance 

inflation factor.   

Model validation employed data splitting and K-fold cross-validation to ensure unbiased performance assessment. Feature 

engineering involved appropriate encoding, transformation, and scaling techniques. Class imbalance was systematically 

addressed using resampling methods (e.g., SMOTE), hybrid strategies, and algorithm-level solutions such as boosting. To 

improve interpretability and computational efficiency, dimensionality reduction was performed using filter, wrapper, and 

projection-based approaches (e.g., PCA, recursive feature elimination).  

  

3.3. Proposed Modeling Methods  

Model building, leveraging historical and current data to forecast future outcomes, is crucial in artificial intelligence. 

Although ML encompasses supervised, unsupervised, and reinforcement learning paradigms, this study focused on 

supervised learning, wherein models are trained on labeled input–output pairs to identify data relationships and enhance 

predictive accuracy. Specifically, this research examined binary classification, distinguishing between “normal” and 

“default” states of IoT devices for analytical clarity.  

The evaluated classification algorithms included logistic regression models, classification and regression trees (CARTs), 

K-nearest neighbor (KNN) models, Naïve Bayes modes, SVMs, and ensemble approaches like random forest models, 

bagging models, AdaBoost, and XGBoost. Logistic regression models utilize the sigmoid function to model probabilities, 

CARTs construct hierarchical decision trees, KNN models conduct classification based on proximity to neighboring data 

points of network log, Naïve Bayes models obtain probabilistic inferences, and SVMs separate classes based on optimal 

hyperplanes. Ensemble methods aggregate multiple base classifiers to improve predictive performance and address the 

bias–variance trade-off.  

Hyperparameter optimization—which involves the careful tuning of parameters, such as the regularization strength in 

logistic regression models, kernel functions and gamma values in SVMs, K values in KNN models, and the tree depth or 

estimator count in ensemble methods—is essential for model efficacy.  

Enhancing ML model interpretability is a crucial research domain, with explanation techniques classified as intrinsic or 

model-agnostic techniques. Model-agnostic techniques, such as LIME and SHAP, are well known due to their broad 

applicability. LIME explains model predictions locally by fitting interpretable surrogate models via sampling and 

weighting. Meanwhile, SHAP employs Shapley values from the cooperative game theory to identify feature contributions 

using a principled approach. Although both techniques target instance-level explanations, LIME emphasizes local 

perturbations, whereas SHAP provides coalition-based attributions. This study compared the computational efficiency of 

both techniques.  

Visualization is crucial for interpreting explanations. Principal visualizations include the following: (1) LIME feature plot, 
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which presents feature impacts per instance; (2) LIME explanation heatmap, which aggregates feature importance across 

instances; (3) SHAP dependency plot, which reveals feature interaction effects; (4) SHAP force plot, which decomposes 

individual predictions into additive contributions; and (5) SHAP summary plot, which ranks global feature importance and 

distributions. These visualizations collectively promote model transparency by clarifying feature contributions to the 

output. Table 2 summarizes the distinguishing characteristics of LIME and SHAP.  

Table 2: LIME vs. SHAP  

LIME  SHAP  

Local explanations  Local and global 

explanations  

Fast, linear surrogate 

models  

Slower, modelagnostic 

explanations  

Measures 

 prediction 

alterations  after  

feature removal  

Quantifies 

 feature 

contributions  to 

predict  output  

differences  

3.4. LLMs for Feature-Value Extraction  

• The use of Gemini Flash or any other LLM to extract feature values from network logs provided the proposed IDS with 

a dynamic approach for detecting frauds.  

3.5. SUMMARY  

This study developed a novel IDS and dedicated workflow optimized for IoT environments. The workflow integrated 

multiple classification methodologies, encompassing deep learning models, decision trees, clustering algorithms, and 

ensemble techniques. Subsequently, XAI techniques (specifically SHAP and LIME) were adopted to enhance model 

interpretability. The study incorporated LLMs for feature extraction from network logs. The anticipated outcomes are 

summarized in line with the study’s objectives, providing a clear framework for future investigations.  

4. . ANALYSIS AND DESIGN  

This section presents the robust workflow of the proposed IDS, as illustrated in Figure 3. The dataset and code used in this 

research are presented in [21]. Here, only the adopted models for the IDS are described, including the preprocessing 

techniques employed to prepare the data for the models. Data sampling techniques, along with feature extraction processes 

and inferences, are presented. Model prediction results are analyzed and compared via LIME and SHAP and different 

explanation plots are discussed. Furthermore, we demonstrate how to extract feature values to draw inferences from the 

models using unstructured network logs.  

4.1. Data Description  

The IoT-23 dataset was used and subsampled to accelerate execution, with performance measured in terms of the time 

taken to run the IDS pipeline. Table 3 describes the subdataset. The dataset contains 23 columns and 1774329 instances of 

benign and malicious data. The individual column descriptions are presented in Supplementary Table S1.  
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Figure 3: Flow diagram of the IDS  

  

4.2. Data Cleaning  

Rigorous data cleaning is essential for reliable predictions. Hence, the following sequential procedures were employed with 

minimal data loss:  

Removal of missing values: Sparse NaNs in key features were mean-imputed; entirely null columns (local orig, local resp, 

and tunnel parents) were discarded.  

Removal of duplicates: None were detected due to unique identifiers (UIDs).  
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Feature Engineering: Replaced Timestamp with the extracted hour to capture temporal effects.  

Irrelevant Features: Discarded noninformative fields (e.g., UIDs).  

Text Preprocessing: Eliminated hyphens for numeric conversion.  

Type Conversion: Encoded IP addresses as binary values.  

Categorical Data: Performed one-hot encoding for conn state, history, proto, and service.  

4.3. EDA  

Comprehensive EDA-guided feature selection provided insights into variable distributions, relationships, and 

multicollinearity.  

4.3.1. Univariate Analysis  

Univariate analysis was adopted to summarize each feature using descriptive statistics (minimum, maximum, quartiles, 

median, and mean). Consequently, significant class imbalance was identified, with 1,434,245 malicious and 338,124 

benign samples (Figure 4), necessitating minority-class oversampling.  

Table 3: Dataset Characteristics  

Category  Instances  Attributes  Proportion (%)  

Benign Hue  453  23  0.021  

Benign Echo  1,375  23  0.066  

Benign Door Lock  

 

23  0.0063  

Mirai (Malicious)  23  50.66  

Hakai (Malicious)  10,404  23  0.50  

Hide and Seek (Mal.)  
 

1,774,329  

23  40.20  

Total  23  100.00  

4.3.2. Categorical and Continuous Variable Distribution  

The analysis of categorical variables revealed that id.orig h and id.orig p were dominated by two values each, indicating 

that most attacks originated from two primary IP addresses and ports. The variable id.resp h was distributed across 

numerous IP addresses, reflecting a wide range of affected devices, while id.resp p clustered around four response ports. 

TCP was the predominant protocol while the HTTP was the most affected protocol, followed by the DNS. S0 was the 

prevailing connection state, implying connection attempts without response. In addition, request histories were primarily 

SYN packets without the ACK bit.  

For continuous variables, request durations were concentrated between 10 and 20 s. Both orig bytes and resp  

bytes were mostly within the 45–50 byte range. As indicated by NaN values for local orig and local resp, all connections 

were remote. The original IP header bytes mostly ranged between 40 and 45 bytes, response bytes were in the range of 0–

40, and response header bytes lied between 40 and 45 bytes. Furthermore, tunneling was not observed (tunnel was 

consistently NaN). These distributions are illustrated in Figure 5.  
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Figure 4: Target variables in univariate analysis  

 

Figure 5: Univariate analysis of features  

 

Figure 6: Bivariate analysis results  

4.3.3. Bivariate Analysis  

Performing bivariate analysis while investigating the relationship between the independent and target variables is crucial 

which is important to know which variables are likely to influence the target variable. Bivariate analysis was performed on 

unprocessed and processed data after oversampling. It was also performed after preprocessing to check the distribution of 

independent variables with the target variable. Findings were then compared with those obtained from model explanation 

techniques and their output features for a particular classification. Figure 6 shows the results of a few bivariate analyses.  

4.3.4. Multivariate Analysis  

Multivariate analysis reveals the relationship between feature variables. Figure 7 illustrates the relationship between all 

independent variables and the target variable.  
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Figure 7: Heatmap obtained from multivariate analysis  

The analysis of the heatmap revealed that the target variable “label” was highly correlated to history S, proto tcp, history 

ShR, orig pkts, and resp pkts as well as to duration to some extent. The label was negatively correlated to a few independent 

variables (id.orig p and history D), and 15 of such correlations were discarded before dimensionality reduction or modeling. 

After discarding these correlated features, only 61 features remained.  

4.4. Data Transformation  

Categorical variables (proto, service, history, and conn state) were converted into the numerical form via one-hot encoding 

using the pandas.get_dummies function, increasing feature dimensionality from 23 to 76. The target variable (label) was 

encoded using a label encoder. In addition, the dataset was partitioned into training and testing subsets with a 70/30 split 

using train_test_split() inScikit-learn.  

4.4.1. Class Balancing and Feature Extraction  

Owing to class imbalance (malicious ¿ benign), the SMOTE was employed to oversample the minority class, constituting 

the first adoption in the IoT IDS for data balancing. After SMOTE implementation, both classes contained 161,727 

instances. Malicious and benign classes were labeled as “1” and “0,” respectively.  

4.4.2. Feature Selection  

Feature selection was performed to mitigate overfitting and improve model accuracy. Four feature selection methods were 

applied to the oversampled data, as presented in Supplementary Table S2. After the successful elimination of correlated 

variables and feature extraction, the extracted features were combined and integrated for modeling.  

4.4.3. Feature Scaling and Dimensionality Reduction  

To ensure comparability across features, numerical variables were standardized utilizing StandardScaler from Scikit-learn. 

Dimensionality reduction was achieved using PCA and LDA. For PCA, the top eight components were retained. 

Meanwhile, LDA—constrained by the binary class structure—yielded a single component. Preliminary results indicated 

that LDA with a logistic regression model achieved high classification performance. Owing to computational constraints, 

analyses were conducted on a stratified random sample of 10,000 instances. Additional classifiers, including KNNs, neural 

networks, GaussianNB, and XGBoost, were evaluated to assess the impact of dimensionality reduction on classification 

accuracy. Table 4 presents detailed results.  

Table 4: Dimensionality Reduction Techniques  

Dimensionality  

Reduction 

Method  

Model  Accuracy   Precision  I Recall  F1-  

Score  

Support 
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PCA  Logistic 

regression  

98%  0:0.99,  

1:0.97  

0:0.97, 

1:0.99  

0:0.98,  

1:0.98  

0:1519, 

1:1481  

LDA  Logistic 

regression  

98%  0:1.00,  

1:0.96  

0:0.96, 

1:1.00  

0:0.98,  

1:0.98  

0:1519, 

1:1481  

4.5. ML Model Implementation  

4.5.1. Selection of the Sampling Technique  

The SMOTE was employed for data oversampling because the minority classes required augmentation. After sampling, 

200,000 instances were extracted for model inputs.  

4.5.2. Evaluating and Selecting the Best Feature Extraction Technique  

Feature selection: Features extracted via the four feature selection methods (correlation-based method, random forest 

classifier, gradient boosting classifier, and Fisher-score-based method) were combined as a union of all features selected 

after discarding correlated variables. The resultant features were as follows. The analysis utilized a subset of sixteen key 

features: proto tcp, id.orig p, id.resp p, resp bytes, duration, orig bytes, proto icmp, orig pkts, conn state S0, history Dd, 

resp pkts, history Sr, orig ip bytes, service http, history ShAdDafF, and history ShADadfF. These features were selected 

due to their relevance to network behavior characterization and attack detection, while ensuring that dimensionality 

remained tractable for one-column presentation.  

4.5.3. Dimensionality Reduction  

Dimensionality reduction was performed after feature extraction. Two process flows were considered. In one of the two 

flows, the end-to-end ML modeling process was conducted. In the other, feature selection and dimensionality reduction 

were omitted. PCA and LDA components were determined, and their performances were compared. Although LDA 

performed slightly better than PCA, we considered both for modeling.  

4.5.4. Data Distribution Visualization  

After dimensionality reduction, data distribution was visualized using t-SNE. Figure 8 shows that more than four clusters 

remained in the reduced data, which was due to more categories of malicious data present in the combined dataset.  

 

 

Figure 8: t-SNE visualization of LDA-reduced training data  

4.5.5. Classifier Training, Tuning, and Evaluation Setup  

This section outlines the model training procedures and adopted algorithms. Two process flows are compared: (1) sampling, 

feature selection, dimensionality reduction, and model tuning (a novel contribution of this study) and (2) direct modeling 

on sampled data, omitting feature selection and dimensionality reduction. Hyperparameter optimization was performed to 

identify the optimal variant of Naïve Bayes models and explore neural network architectures that would achieve maximal 

accuracy.  
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4.6. Model Evaluation  

Model performance was assessed using cross-validation scores. Metrics pertaining to the algorithms derived from 

confusion matrices, including accuracy, precision, recall, and F1-score, were compared. Table 5 summarizes the results 

from both process flows.  

4.7. Model Explainability  

This section elucidates the decision-making process of the models for specific predictions, employing explainability 

techniques such as SHAP and LIME. Both methods, implemented via appropriate libraries, elucidated model prediction 

logic via diverse visualizations, including waterfall, force, and summary plots. Given that certain explainers were restricted 

to specific model types (e.g., tree-based or linear models), the discussion is organized by the plot type rather than the 

explainer. This approach facilitates clearer identification of plots compatible with corresponding explainers and model 

categories, constituting a novel contribution, as summarized in Supplementary Table S3.  

SHAP offers local and global interpretability, providing rapid explanations for tree-based models via TreeSHAP, 

significantly reducing the computation time compared to legacy Kernel SHAP. Herein, relevant SHAP plots addressing 

the research problem were generated and analyzed for different models. Specifically, summary plots obtained using Kernel 

SHAP (with logistic regression) and TreeSHAP (with XGBClassifier) exhibited similar key features, although TreeSHAP 

demonstrated markedly superior efficiency, as presented in Table 6. All plotted results are comprehensively discussed.  

A SHAP waterfall plot (Figure 9) displays SHAP values on the X-axis, with corresponding features and their values shown 

along the Y-axis, highlighting feature interactions beyond individual effects. This plot was essential to analyze the results 

of the summary plots in detail. The plot indicated that higher source port values are associated with a greater likelihood of 

malicious packets, as indicated by higher SHAP values.  

In a force plot, the individual contributions and directions (positive or negative) of each feature to a specific prediction are 

visualized for a deep learning model (three-layer sequential network). This enables the identification of features exerting 

the most influence in classifying a TCP packet as malicious, such as shorter duration, fewer response bytes, and fewer 

original bytes.  

Table 5: Model Performance With/Without Feature Selection and Dimensionality Reduction  

Method  Dimensionality Algorithm Reduction  Accuracy (%)  F1  

Score  

FS + FS  PCA  Logistic Regression  98.00  1.00  

FS + FS  LDA  Logistic Regression  98.00  1.00  

FS + FS  PCA  XGBoost  99.93  1.00  

FS + FS  LDA  XGBoost  99.65  1.00  

FS + FS  PCA  Gaussian NB  98.00  1.00  

FS + FS  LDA  Gaussian NB  98.00  1.00  

FS + FS  PCA  KNN  97.85  1.00  

FS + FS  LDA  KNN  97.85  1.00  

FS  NA  GaussianNB  84.94  0.90  

FS  NA  MultinomialNB  72.13  0.70  

FS + FS  PCA  Neural Network  98.94  –  

FS + FS  LDA  Neural Network  97.95  –  

FS + FS  NA  Neural Network  99.38  –  

Abbreviations: FS = Feature Selection; FS + FS = Feature Selection and Scaling; PCA = Principal Component  

Analysis; LDA = Linear Discriminant Analysis; KNN = K-Nearest Neighbors; NB = Naïve Bayes; NA = Not Applicable. 

Only test results are shown. F1 values are not reported for neural networks.  
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Figure 9: SHAP Waterfall Plot  

 

  

Figure 10: LIME plot B  

A waterfall plot (Figure 9) provides a quantifiable, instance-level breakdown of feature contributions to the SHAP value. 

Unlike the force plot, it specifies the magnitude of each feature’s impact; for example, a duration value of −0.409 reduces 

the SHAP value by −1.36, clarifying its effect on designating the class as “Benign.” LIME provides local, model-agnostic 

explanations by quantifying each feature’s influence on an individual prediction (Figure 10), including class probabilities. 

It enables faster instance-level interpretation than force or waterfall plots. Herein, LIME classified an instance as malicious 

with 100% confidence, primarily influenced by resp bytes, history Dd, id.resp p, and id.orig p. Python packages used in 

the analysis were standard libraries used for data analysis and ML, including imblearn, lime, matplotlib, mlxtend, numpy, 

pandas, python, scikit-learn, scipy, seaborn, shap, and xgboost.  

4.8. LLMs for Feature-Value Extraction  

4.8.1. User Prompt  

Figure 11 presents a prompt used to request an LLM (Gemini Flash 2.0) to extract the feature values.  
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Table 6: Kernel SHAP and TreeSHAP Time Difference  

SHAP Method  Time  Taken  

(Samples)  

Time 

 Take

n  

(Instances)  

Kernel SHAP  2 min (100 

samples)  

–  

TreeSHAP  20 s (200,000  

in- stances)  

–  

  

 

Figure 11: User Prompt For Feature-Value Extraction  

  

4.8.2. Gemini Flash 2.0 Response  

Figure 12 presents a response to the aforementioned prompt, demonstrating that it was successful in extracting the feature 

values. The link to the entire chat with Gemini can be found in [11].  

4.9. Summary  

This section presents a stepwise methodology for implementing and modeling the IDS in an IoT environment. The process 

involved IoT data preprocessing; SMOTE-based oversampling; univariate, bivariate, and multivariate (heatmap) analyses; 

and feature selection/dimensionality reduction using the chi-square test and PCA or LDA. First, five models were built 

with PyCaret. Further, SHAP and LIME were employed for explainability, with the application of t-SNE for visualizing 

SHAP clustering—a novel concept. Notably, an LLM was used for feature extraction from unstructured logs, further 

contributing to the study’s novelty.  

5. RESULTS AND DISCUSSION  

This section details model results, SHAP and LIME interpretations, and performance discussion across target classes and 

instances. In addition, it examines algorithm suitability and appropriate metrics for IoT IDS modeling, with guidelines for 

model output interpretation.  

 

  

Figure 12: LLM Response 2 from Gemini: Extracted Feature Values  

5.1. Feature Extraction from Unstructured Logs  

Utilizing Gemini Flash 2.0, relevant features were reliably extracted for optimal algorithm performance [11].  
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5.2. Model Performance Analysis  

Model performance was evaluated with and without feature selection and dimensionality reduction. The SMOTE was 

employed to address class imbalance, expanding the dataset from under-sampled 200,000 instances to balanced 323,454 

instances. Fifteen correlated features were discarded. Further, three feature selection techniques were applied, with their 

features combined to obtain the final set. Fisher score was considered, adding novelty to the study. Domain-informed 

univariate analysis highlighted features such as protocol type (proto tcp), port numbers, and packet history (e.g., history Sr 

and history Dd).  

5.3. Dimensionality Reduction  

PCA and LDA were applied for dimensionality reduction, with LDA slightly exceeding PCA in terms of accuracy, 

precision, and recall. PCA and LDA exhibited comparable results due to prior feature selection and the dataset 

dimensionality. Notably, the accuracy of GaussianNB improved markedly post-PCA/LDA, which is a novel finding. This 

may have resulted from component-based modeling, as opposed to feature-based modeling.  

5.4. Top Three Models  

First, top five models were selected by modeling using PyCaret. Subsequently, these top five models were implemented 

using two flows as mentioned earlier: one with feature selection and dimensionality reduction and the other with a 

straightforward model application. XGBoost classifier exhibited the best performance among the logistic regression model, 

neural network, KNN, and Naïve Bayes model, showing 99.99% accuracy and very good precision and recall scores. The 

second-best model was the KNN, with an accuracy of 99.82%.  

5.5. Why did XGBoost Perform Better than the Other Models?  

XGBoost performed better than other models because boosting algorithms give more importance to minor instances that 

might go misclassified during training in other algorithms. Hence, notably, boosting algorithms will be beneficial for 

modeling IDSs in IoT environments.  

  

 

Figure 13: Evaluation metric comparison for malicious data  

5.6. Are Clustering Algorithms Worth Experimenting for use in IDSs?  

The answer to this question is evidently yes because the KNN achieved a high accuracy and good results in terms of 

precision, recall, and F1 Scores, showing an accuracy of 99.82%.  

5.7. Did Feature Selection with Dimensionality Reduction Lead to a Significant Increase in the Accuracy of Any Model?  

Only Gaussian Naïve Bayes models exhibited a significant increase in accuracy (~48%). This was a unique observation 

not reported in the literature and supports the novelty of this research. This observation can be supported by the fact that 

PCA and LDA generated different components from the same features, which might be beneficial for creating a component 

vector instead of a feature vector.  

Figure 13 compare different evaluation metrics. Evidently, XGBoost classifier performed best in terms of all metrics for 

both classes.  

5.8. Model Explainability Analysis  

Determining which explainability technique to employ and its corresponding scenario was crucial in this research as this 

research focused on elucidating the reasons behind a particular prediction and its influencing factors. Accordingly, we 
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adopted a distinct process or flow for exploring model explainability, which began with the analysis of plots and their 

corresponding algorithms, highlighting the importance of the plots and not just the explainability technique. This approach 

is unique, indicating the novelty of this work. Plots are comprehensively discussed and analyzed, as illustrated in Figures 

15 and 16.  

 

Figure 14: Impact of the SHAP value on model output  

  

 

Figure 15: SHAP dependency and inter-relationship plot  

5.8.1. Summary Plot  

The summary plot shows the contribution of a feature to the predicted result in terms of its SHAP value for a given instance, 

as illustrated in Figure 14. A high history S value increased the SHAP value such that the chances of a packet being 

malicious increased. The value “1” of poto tcp indicated that the packet was sent via the TCP protocol and had a positive 

effect on the packet being malicious. The orig ip bytes value decreased as the impact on the packet being malicious 

increased. Lower value of history D increased the chances of the packet being malicious. The orig pkts value increased 

with increasing probability of the packet being malicious.  

5.8.2. Dependency Plot  

The SHAP value distribution of a particular feature can be verified using a dependency plot. The dependency plot (Figure 

15) of id.resp p demonstrated that the response port’s lower values with higher values in response bytes yield a higher 

SHAP value of id.resp p, and thus a higher chance of the packet being malicious. From this plot, it is observed that at 



Advanced Machine Learning Pipeline Utilizing Generative and Explainable Artificial Intelligence for Reliable 

Intrusion Detection in Internet of Things. 

© 2025 Journal of Carcinogenesis | Published for Carcinogenesis Press by Wolters Kluwer-Medknow 

 

 pg. 83 
 

 

approximately -1.5 (id.resp p), if resp bytes shows a high value, then the packet is more probable to be malicious. Hence, 

a dependency plot can be utilized to conclude the summary plot’s observations.  

5.8.3. Force Plot  

Using a force plot, we can determine the variation and contribution of each feature to a particular instance in the data. In 

addition, we can deduce the scale to which the feature is contributing to the target value and whether the contribution to 

the target variable is positive or negative.  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 16: LIME Explainability For Malicious Packet  

The force plot demonstrates an instance to be correctly classified as malicious and correctly justifies the summary plot 

characteristics.  
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Figure 17: Prediction Probabilities  

5.8.4. LIME  

LIME explains the contribution of each feature in an instance to the target variable outcome. Utilizing LIME, we can 

examine the prediction probability, the feature, and their contributions, together with the values in the input. LIME correctly 

predicted a malicious packet. LIME also highlighted the range of values for which it classified an instance as malicious. 

After plotting LIME plots for benign instances, it was facile to segregate the values of the feature for which a particular 

classification decision is made (Figure 16).  
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5.9. Is There Any Difference Between Kernel SHAP and TreeSHAP? Which Will Be Recommended for IDS in IoT?  

Kernel SHAP is a model-agnostic approach to SHAP value estimation, utilizing sampling-based Shapley value 

approximation, whereas TreeSHAP is specifically designed for tree-based models, providing exact Shapley values with 

higher computational efficiency. Given XGBoostClassifier’s superior performance and TreeSHAP’s faster processing, 

TreeSHAP is recommended for explainability in IDS for IoT environments.  

5.10. What Is the Process Flow in Which Explainability Should Be Targeted in IDS for IoT?  

The recommended process for identifying key features begins with a global explanation (e.g., SHAP summary plots) as 

shown in Figure 17. Subsequently, dependency plots for significant features are analyzed. Instance-level explanations 

should follow, using SHAP force and waterfall plots to assess local contributions. Obtained results can be cross validated 

with LIME plots. Both SHAP and LIME methods consistently identified malicious instances and highlighted similar 

important features in this research.  

5.11. SHAP or LIME Instance Explainability in IDS IoT?  

When obtaining a faster explanation of an instance is necessary, it is recommended to plot an explanation with LIME. 

Figure 18 compares feature selection and importance in PCA/Kernel SHAP and TreeSHAP. Evidently, feature Selection, 

Kernel SHAP, and Tree SHAP yielded the same result in terms of features selected. However, a slight difference emerges 

in the feature importance, which is because a few features did not significantly affect the model’s decision for classification.  

 

Figure 18: Feature Selection Comparison between PCA/Kernel SHAP and TreeSHAP  

  

5.12. Is t-SNE a Helpful Visualizer for Interpreting Instances in IDS for IoT?    

t-SNE is an optimal visualizer in IDS for IoT because we can observe the distribution into several clusters regarding raw 

data depicting different kinds of attack datasets. t-SNE also exhibits proper segregated clustering of SHAP values into two 

prominent classifications, one for benign and the other for malicious. Figures 19 and 20 illustrate how feature clustering 

improved after creating the model.  
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Figure 19: t-SNE Visualization of Data Distribution of instances before modeling using SHAP values  

 

  

Figure 20: t-SNE Visualization of Data Distribution of the cases after modeling using SHAP values  

5.13. Summary  

The results indicated that XGBoost classifier outperformed other boosting algorithms. Feature selection via SHAP, LIME, 

and a dedicated algorithm yielded consistent key features. Notably, LIME provided faster instancelevel classifications than 

SHAP. All model explainability visualizations were comprehensively analyzed, delineating both positive and negative 

feature contributions. A systematic process for interpretability was established, and tSNE effectively visualized clustering 

for feature-selected and SHAP-valued model data.  

6. CONCLUSIONS AND RECOMMENDATIONS  

This study advanced IDSs used in the IoT using ML via robust workflow design and comprehensive classifier evaluations. 

Further, a novel application of Fisher scores was developed for feature selection. Key packet features, especially protocol 

types and flag bits, emerged as the most influential features. Dimensionality reduction significantly enhanced the 

performance of certain models (e.g., accuracy of the Gaussian Naïve Bayes model increased from 50% to 98%). Model 

interpretability was addressed using SHAP and LIME. Both techniques reliably identified contributory features, with 

TreeSHAP demonstrating more computational efficiency than Kernel SHAP and LIME excelling at rapid instance-level 

clarifications. A structured framework for explainability, which combined global, dependence, and local analyses, was 

developed, facilitating model interpretability at multiple layers.  

The research recommends refining real-time response mechanisms for detected threats in IoT environments and conducting 

further investigations into advanced feature selection methods, granular explanations of attack subtypes, comparative deep 

learning analyses, and sampling technique evaluations to enhance IDS effectiveness.  
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