

Oxidative Stress as a Driver of Rheumatoid Arthritis: Mechanisms, Clinical Biomarkers, and Therapeutic Targeting

Anastasia V. Poznyak ^{1*}, Igor Alexandrovich Sobenin ², Elizaveta Romanovna Korchagina ¹, Olesya Olegovna Galanova ³, Sergey Alekseevich Protasov ⁴, and Alexander N. Orekhov ¹

¹Institute for Atherosclerosis Research, Osennaya 4-1-207, 121609 Moscow, Russia;

Email ID: tehhy_85@mail.ru

²Smirnov Institute of Experimental Cardiology, Chazov National Medical Research Center of Cardiology, 15-A, Academician Chazov Street, 121552 Moscow, Russia

³Moscow Center for Advanced Studies, 20, Kulakova Street, 123592 Moscow, Russia⁴ Department of Polyclinic Therapy, NN Burdenko Voronezh State Medical University, 10 Studencheskaya Street, 394036 Voronezh, Russia

⁴Talrose Institute for Energy Problems of Chemical Physics, Semenov Federal Research Center for Chemical Physics, 38-2, Leninsky Prospekt, 119334 Moscow, Russia

¹Institute for Atherosclerosis Research, Osennaya 4-1-207, 121609 Moscow, Russia

Email ID: alexandernikolaevichorekhov@gmail.com

ABSTRACT

This review focuses on the critical role of reactive oxygen species (ROS) in the pathogenesis of rheumatoid arthritis (RA) and explores potential therapeutic strategies targeting oxidative stress. ROS, including free radicals and non-radical species, are generated as byproducts of normal metabolic processes, but their excessive production leads to oxidative stress, contributing to inflammation and joint destruction in RA. We discuss mechanisms by which ROS drive synovial inflammation, activate immune cells, and modulate key transcription factors like NF- κ B and Nrf2, enhancing the inflammatory response. The review highlights the significance of lipid peroxidation and oxidative damage markers, such as malondialdehyde and 8-hydroxy-2-deoxyguanosine, in RA pathology. Additionally, we examine various antioxidant strategies, including the application of natural compounds and mitochondrial-targeted therapies, aimed at mitigating oxidative stress. By addressing the inflammatory cycle perpetuated by ROS, this article underscores the potential of antioxidant therapies to alleviate RA symptoms and slow disease progression, paving the way for novel treatment approaches in clinical practice.

INTRODUCTION

Reactive oxygen species (ROS) are highly reactive molecules derived from the metabolism of oxygen. These species include free radicals such as superoxide anion ($O_2\cdot^-$), hydroxyl radical ($\cdot OH$), and non-radical species like hydrogen peroxide (H_2O_2) and singlet oxygen ($1O_2$) [1,2]. A free radical is “a molecule containing one or more unpaired electrons and capable of independent existence”. Free radicals are highly reactive species and are involved in several metabolic processes including oxidative reactions in mitochondria, “oxidative burst” of phagocytes, etc [3-5]. In excess, free radicals lead to diseases including autoimmune, cardiovascular, neurodegenerative, cancer, and must be reduced to minimize these pathological conditions. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are two types of free radicals generated in the body and consist of both radical and non-radical molecules. Under normal conditions, living organisms use respiration to survive, they undergo the process of reducing oxygen molecules by attaching four electrons, resulting in the formation of water [6-8]. This process produces molecules such as superoxide anion ($O_2\cdot^-$), hydrogen peroxide (H_2O_2) and hydroxyl radical ($OH\cdot$) as a byproduct. In the process of energy transfer via electron transport of molecular oxygen, $O_2\cdot^-$ is formed intracellularly in mitochondria, potentially leading to the development of various pathophysiological conditions. In the context of rheumatoid arthritis (RA), ROS play a significant role in the pathogenesis and progression of the disease [9-11]. RA is a chronic inflammatory disorder characterized by synovial inflammation and joint destruction. The overproduction of ROS in RA is largely due to the activation of immune cells, such as macrophages, neutrophils, and

T cells, within the inflamed synovial tissue. These cells generate ROS through various enzymatic systems, including NADPH oxidase, myeloperoxidase, and the mitochondrial electron transport chain [12-14].

The excess ROS in RA contributes to oxidative stress, a state where the antioxidant defenses of the body are overwhelmed, leading to damage of cellular components like lipids, proteins, and DNA. One of the critical biochemical pathways involved in ROS generation in RA is the activation of NADPH oxidase, which produces superoxide anion [15-17]. This superoxide anion can further react to form hydrogen peroxide, either spontaneously or catalyzed by superoxide dismutase (SOD). Hydrogen peroxide can then be converted to the highly reactive hydroxyl radical in the presence of transition metals like iron or copper via the Fenton reaction. These ROS can initiate lipid peroxidation, resulting in the formation of malondialdehyde and 4-hydroxynonenal, which are markers of oxidative damage and can alter cell membrane integrity and function [18,19].

In RA, the presence of ROS contributes to the activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κ B), a transcription factor that regulates the expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF- α) and interleukin-1 beta (IL-1 β) [20]. These cytokines further amplify the inflammatory response and ROS production, creating a vicious cycle of inflammation and oxidative stress. Additionally, ROS are involved in the modification of extracellular matrix components in the synovium, leading to the activation of matrix metalloproteinases (MMPs). MMPs degrade collagen and other matrix proteins, contributing to cartilage destruction and joint erosion characteristic of RA [21-23].

The antioxidant defense mechanisms in RA patients are often compromised, exacerbating the effects of oxidative stress. Enzymatic antioxidants such as superoxide dismutase, catalase, and glutathione peroxidase, as well as non-enzymatic antioxidants like vitamin C, vitamin E, and glutathione, are found at reduced levels in RA synovial fluid and plasma. This imbalance between ROS production and antioxidant defense leads to sustained oxidative damage and inflammation [24,25].

OXIDATIVE STRESS AND MARKERS

Oxidative stress is a biochemical condition characterized by an imbalance between the production of reactive oxygen species (ROS) and the body's ability to detoxify these reactive intermediates or repair the resultant damage [26-28]. ROS are highly reactive molecules that include free radicals like superoxide anion ($O_2^{\bullet-}$), hydroxyl radical ($\bullet OH$), and non-radical species like hydrogen peroxide (H_2O_2). Under normal physiological conditions, ROS play essential roles in cell signaling and homeostasis. However, excessive ROS production or insufficient antioxidant defenses can lead to oxidative stress, resulting in damage to lipids, proteins, and nucleic acids [2,29-31].

Lipid peroxidation is a primary outcome of oxidative stress, where ROS attack polyunsaturated fatty acids in cell membranes, initiating a chain reaction that produces lipid peroxides. These lipid peroxides further decompose into reactive aldehydes such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) [32,33]. MDA and 4-HNE are commonly used as biomarkers of oxidative stress, as they can form adducts with proteins and DNA, disrupting their normal function. The measurement of MDA levels, typically through thiobarbituric acid reactive substances (TBARS) assay, provides an indication of the extent of lipid peroxidation [34].

Proteins are another major target of ROS, leading to the formation of carbonyl groups on amino acid side chains, disulfide bonds, and nitrotyrosine through the reaction with reactive nitrogen species. Protein carbonyl content is a widely used marker of oxidative stress, often measured by the reaction with 2,4-dinitrophenylhydrazine (DNPH) to form hydrazones, which can be quantified spectrophotometrically [35-37]. Additionally, advanced oxidation protein products (AOPPs) and the presence of nitrotyrosine residues are indicative of oxidative modifications to proteins and are used as markers of oxidative stress [38].

Nucleic acids, particularly DNA, are susceptible to damage by ROS, resulting in the formation of various modified bases, strand breaks, and cross-linking. One of the most studied oxidative DNA lesions is 8-hydroxy-2'-deoxyguanosine (8-OHdG), which occurs due to the oxidation of guanine. 8-OHdG can be measured in cells, tissues, and bodily fluids, serving as a biomarker for oxidative stress and DNA damage [39,40]. The comet assay, also known as single-cell gel electrophoresis, is another technique used to assess DNA damage and repair, providing information on the extent of strand breaks. In RA patients, 8-OH-dG levels are significantly reduced by methotrexate or TNF inhibitors such as infliximab and etanercept [41,42].

Antioxidant defense systems, including enzymatic antioxidants like superoxide dismutase (SOD), catalase, and glutathione peroxidase, play crucial roles in mitigating oxidative stress. SOD catalyzes the dismutation of superoxide anion into hydrogen peroxide, which is then broken down into water and oxygen by catalase or glutathione peroxidase [43]. Non-enzymatic antioxidants, such as vitamin C, vitamin E, and glutathione, also contribute to neutralizing ROS and preventing cellular damage. The levels and activities of these antioxidants can be measured to assess the antioxidant capacity of an organism [44].

The glutathione system, in particular, is central to cellular redox homeostasis. Glutathione exists in reduced (GSH) and oxidized (GSSG) forms, with the GSH/GSSG ratio serving as an indicator of cellular oxidative stress. Under oxidative conditions, GSH is consumed and converted to GSSG, and the GSH/GSSG ratio decreases. The measurement of this ratio provides insights into the redox state of the cell [45,46].

Biologic drugs are widely used in clinical practice in patients with RA, but side effects are a concern. If other targets, such as antioxidants or agents that inhibit or stimulate ROS, are acted upon, the clinical symptoms of RA—the number of tender joints, arthralgias, joint swelling, and osteoarthritic joint disease—are reduced [47,48]. Physical activity, such as knee flexion, may also improve. Common markers of oxidative stress include 8-hydroxy-2-deoxyguanosine (8-OHdG), thiobarbituric acid reactive substances, malondialdehyde (MDA), isoprostane (IsoPs) and its metabolites, allantoin, and the end product of progressive glycation (AGE) [49].

NEUTROPHILS AND AUTOPHAGY IN RA AND ROS

In the context of ROS in RA firstly it is important to describe the role of neutrophils and autophagy in pathogenesis and inflammation process. Neutrophils are white blood cells essential to the innate immune system and play a critical role in the pathophysiology of rheumatoid arthritis (RA) [50-52]. These cells are among the first responders to sites of inflammation, where they execute various functions, including phagocytosis, degranulation, and the release of reactive oxygen species (ROS) to combat pathogens. In RA, neutrophils accumulate in the synovial fluid and tissue, contributing to the chronic inflammatory environment [53-56]. One of the primary biochemical mechanisms through which neutrophils exert their effects in RA is the generation of ROS. Neutrophils produce ROS via the NADPH oxidase complex, which catalyzes the reduction of oxygen to superoxide anion ($O_2^{\bullet-}$). This superoxide anion can dismutate into hydrogen peroxide (H_2O_2) either spontaneously or via the enzyme superoxide dismutase (SOD) [57,58]. Hydrogen peroxide can subsequently produce hydroxyl radicals ($\bullet OH$) through Fenton reactions involving transition metals like iron, contributing to oxidative stress and tissue damage. Also, in the inflammatory environment of RA, neutrophils can release their granule contents, including myeloperoxidase (MPO), an enzyme that uses hydrogen peroxide to produce hypochlorous acid (HOCl), a potent oxidant that contributes to tissue damage [59]. Neutrophil extracellular traps (NETs), composed of decondensed chromatin and granular proteins, are also released by neutrophils and can exacerbate inflammation and ROS production in RA. The formation of NETs, a process known as NETosis, is influenced by autophagy [60,61].

Autophagy is a cellular process involved in the degradation and recycling of damaged organelles, misfolded proteins, and intracellular pathogens. In neutrophils, autophagy plays a dual role, contributing to both cell survival and the regulation of inflammatory responses. Under conditions of oxidative stress, such as those present in the inflamed synovium of RA patients, autophagy can be upregulated as a protective mechanism [62-64]. The autophagic process involves the formation of autophagosomes, double-membrane vesicles that engulf cytoplasmic components and fuse with lysosomes to form autolysosomes, where the contents are degraded by lysosomal enzymes. Autophagy can facilitate the release of NETs, while ROS are essential for NET formation, creating a feedback loop that perpetuates inflammation [65,66].

Also, there is evidence that neutrophil autophagy can modulate the production of ROS. On one hand, autophagy can help mitigate oxidative damage by removing damaged mitochondria through a specific form of autophagy called mitophagy, thereby reducing the mitochondrial ROS production. On the other hand, excessive or dysregulated autophagy can lead to increased ROS generation [67,68]. For instance, the activation of the autophagy-related gene (Atg) pathway in neutrophils can influence NADPH oxidase activity and thus ROS production. Furthermore, the interplay between ROS and autophagy in neutrophils is complex and involves several signaling pathways. ROS can act as signaling molecules that induce autophagy through the activation of pathways such as the AMP-activated protein kinase (AMPK) pathway and the inhibition of the mammalian target of rapamycin (mTOR) pathway. Conversely, autophagy can regulate ROS levels by degrading ROS-producing organelles and proteins [69,70].

Table 1: Mechanisms of ROS in Rheumatoid Arthritis

Mechanism	Description
ROS Generation	Produced primarily by immune cells (macrophages, neutrophils, T cells) via NADPH oxidase and mitochondrial processes
Lipid Peroxidation	ROS attack polyunsaturated fatty acids, generating products like malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE)
DNA Damage	Formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) due to ROS, serving as a biomarker for oxidative damage
Transcription Factors	Activation of NF-κB and Nrf2 by ROS, leading to increased expression of pro-inflammatory and antioxidant genes
Cytokine Release	Enhanced production of TNF-α and IL-1β, perpetuating the inflammatory cycle through ROS feedback

MAIN TRANSCRIPTIONAL FACTORS ASSOCIATED WITH ROS

Main transcriptional factors associated with reactive oxygen species (ROS) and redox signaling play critical roles in cellular responses to oxidative stress and the maintenance of redox homeostasis. One of the primary transcription factors modulated by ROS is nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) [71,72]. NF-κB is a key regulator of inflammatory responses and is activated by oxidative stress. In its inactive state, NF-κB is bound to inhibitory IκB proteins in the cytoplasm. Upon stimulation by ROS or other signals, IκB is phosphorylated by the IκB kinase (IKK) complex, leading to its ubiquitination and proteasomal degradation. This releases NF-κB, allowing it to translocate to the nucleus, where it binds to specific DNA sequences and promotes the transcription of genes involved in inflammation, immune responses, and cell survival [73,74].

Another crucial transcription factor influenced by ROS is nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is a master regulator of the cellular antioxidant response. Under normal conditions, Nrf2 is bound to its inhibitor, Kelch-like ECH-associated protein 1 (Keap1), in the cytoplasm, which facilitates its ubiquitination and degradation. Oxidative stress leads to the modification of cysteine residues on Keap1, causing a conformational change that releases Nrf2 [75,76]. Free Nrf2 translocates to the nucleus, where it binds to antioxidant response elements (ARE) in the promoter regions of target genes. These genes encode various antioxidant proteins and enzymes, such as heme oxygenase-1 (HO-1), glutathione S-transferases (GSTs), and NAD(P)H oxidoreductase 1 (NQO1), which help mitigate oxidative stress and restore redox homeostasis [77].

In this context it is important also to consider the process of redox signaling. In redox signaling, the controlled generation of ROS typically originates from specific cellular sources such as mitochondria, NADPH oxidases (NOX), and other enzymatic systems. Mitochondria are major sites for ROS production during the process of oxidative phosphorylation, where the electron transport chain can leak electrons that react with molecular oxygen to form superoxide anion [78-80]. Superoxide is then rapidly dismutated to hydrogen peroxide by the action of superoxide dismutases (SODs). Hydrogen peroxide, unlike other ROS, is relatively stable and can diffuse across membranes, making it a critical redox signaling molecule. NADPH oxidases are another significant source of ROS, particularly in the context of immune cell activation and inflammatory responses [81,82].

Hydrogen peroxide serves as a signaling molecule primarily through its ability to reversibly oxidize specific cysteine residues in target proteins. These cysteine residues, often found in the active sites of enzymes or in regulatory domains, can form disulfide bonds or sulfenic acid intermediates upon oxidation [83,84]. This reversible modification can alter protein function, activity, localization, or interactions, thereby modulating cellular signaling pathways. For instance, the oxidation of cysteine residues in protein tyrosine phosphatases (PTPs) can inhibit their activity, leading to sustained phosphorylation and activation of signaling cascades such as those mediated by receptor tyrosine kinases [85,86].

Redox-sensitive transcription factors play crucial roles in redox signaling. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of the antioxidant response. Under basal conditions, Nrf2 is sequestered in the cytoplasm by Kelch-like ECH-associated protein 1 (Keap1) and targeted for degradation [87,88]. In response to oxidative stress, cysteine

residues on Keap1 are modified, leading to the release and stabilization of Nrf2. Nrf2 then translocates to the nucleus, where it binds to antioxidant response elements (AREs) in the promoters of genes encoding detoxifying and antioxidant enzymes, such as heme oxygenase-1 (HO-1), glutathione S-transferases (GSTs), and NAD(P)H quinone dehydrogenase 1 (NQO1) [89,90].

Another important redox-sensitive transcription factor is nuclear factor kappa-light-chain-enhancer of activated B cells (NF- κ B). In its inactive state, NF- κ B is bound to inhibitory proteins called I κ Bs. Upon exposure to ROS or other stimuli, I κ B is phosphorylated by the I κ B kinase (IKK) complex, leading to its ubiquitination and degradation. This allows NF- κ B to translocate to the nucleus and activate the transcription of genes involved in inflammation, immune response, and cell survival [91].

The redox state of the cell is also tightly regulated by the glutathione (GSH) system. Glutathione exists in a reduced (GSH) and oxidized (GSSG) form. The ratio of GSH to GSSG is a key indicator of cellular redox status. GSH can directly scavenge ROS or serve as a substrate for glutathione peroxidases (GPx) and glutaredoxins, enzymes that reduce peroxides and disulfides, respectively. The regeneration of GSH from GSSG is catalyzed by glutathione reductase (GR), using NADPH as a reducing agent [92].

Peroxiredoxins (Prxs) and thioredoxins (Trxs) are other critical components of the cellular redox regulatory network. Peroxiredoxins reduce hydrogen peroxide to water and are regenerated by thioredoxins, which in turn are reduced by thioredoxin reductase using NADPH. This system not only detoxifies ROS but also participates in redox signaling by modulating the redox state of cysteine residues in target proteins [93].

Nitric oxide (NO), another significant redox-active molecule, modulates signaling pathways through S-nitrosylation, the addition of a nitric oxide group to the thiol side chain of cysteine residues in proteins. This modification can influence protein function and interactions, impacting processes such as vasodilation, neurotransmission, and immune responses [94].

TARGETING ROS OR MITOCHONDRIA IN RA THERAPY DRUGS

RA is characterized by the persistent infiltration of immune cells into the synovial joints, leading to excessive ROS production. These ROS contribute to the pathogenesis of RA by promoting inflammatory cytokine release, synovial hyperplasia, and joint destruction. Consequently, therapeutic strategies aimed at reducing ROS levels or improving mitochondrial function hold promise for alleviating RA symptoms and slowing disease progression [95,96].

One key therapeutic strategy involves the use of antioxidants to neutralize ROS. Antioxidants such as N-acetylcysteine (NAC) and vitamin E have been investigated for their potential to reduce oxidative stress in RA patients [97,98]. NAC, a precursor to glutathione, replenishes intracellular glutathione stores, thereby enhancing the cell's antioxidant capacity. This reduces the damaging effects of ROS on synovial cells and may decrease inflammation. Similarly, vitamin E, a lipid-soluble antioxidant, can scavenge free radicals within cell membranes, protecting lipids from peroxidation and preserving cell integrity [99,100].

Targeting the mitochondrial sources of ROS production is another promising approach in RA therapy. Mitochondria are major producers of ROS during oxidative phosphorylation, and mitochondrial dysfunction in RA synoviocytes and immune cells contributes significantly to oxidative stress [101]. Mitochondria-targeted antioxidants such as mitoquinone (MitoQ) have been developed to specifically accumulate within mitochondria. MitoQ comprises a ubiquinone moiety linked to a lipophilic cation, which drives its selective uptake into mitochondria. By localizing within mitochondria, MitoQ can effectively neutralize ROS at their source, reducing mitochondrial oxidative damage and improving mitochondrial function [102,103].

Mitochondrial uncouplers like 2,4-dinitrophenol (DNP) have also been explored as a means to modulate mitochondrial ROS production. Uncouplers dissipate the proton gradient across the mitochondrial inner membrane, reducing the production of superoxide by the electron transport chain [104]. Although classical uncouplers like DNP are not suitable for clinical use due to toxicity, newer, safer uncouplers are under investigation for their potential to reduce mitochondrial ROS and ameliorate inflammation in RA [105,106].

Another aspect of targeting mitochondria in RA therapy involves enhancing mitochondrial biogenesis and function. Agents such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 α) activators can promote the generation of new mitochondria and improve mitochondrial efficiency [107,108]. By boosting mitochondrial biogenesis,

cells can better manage energy production and reduce the overproduction of ROS, which is often a consequence of mitochondrial dysfunction [109].

Inhibition of specific enzymes involved in ROS production has also been considered. NADPH oxidase (NOX) enzymes are major sources of ROS in immune cells. Inhibitors of NOX enzymes, such as apocynin, have shown potential in reducing ROS levels and inflammatory responses in RA. Apocynin inhibits the assembly of the NOX complex, thereby preventing the formation of superoxide and subsequent ROS. This inhibition can reduce the oxidative stress and inflammatory damage in RA joints [110,111].

Furthermore, the role of mitochondrial dynamics, including fission and fusion processes, has gained attention in RA therapy. Mitochondrial fission, mediated by dynamin-related protein 1 (Drp1), is often upregulated in RA, leading to fragmented and dysfunctional mitochondria that produce more ROS. Inhibitors of Drp1, such as mdivi-1, can reduce mitochondrial fragmentation, thereby improving mitochondrial function and reducing ROS production. By modulating mitochondrial dynamics, these inhibitors can potentially restore normal mitochondrial function and reduce the pathological effects of oxidative stress in RA [112,113].

Modulating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway is an additional therapeutic strategy for targeting ROS in RA. Nrf2 is a transcription factor that regulates the expression of various antioxidant and cytoprotective genes. Under normal conditions, Nrf2 is bound to Kelch-like ECH-associated protein 1 (Keap1) and targeted for degradation [114,115]. However, oxidative stress or pharmacological activators can disrupt the Nrf2-Keap1 interaction, leading to the stabilization and nuclear translocation of Nrf2. Once in the nucleus, Nrf2 binds to antioxidant response elements (AREs) in the promoters of target genes, enhancing the expression of antioxidant enzymes such as heme oxygenase-1 (HO-1), glutathione S-transferases (GSTs), and NAD(P)H quinone dehydrogenase 1 (NQO1). Compounds like bardoxolone methyl activate the Nrf2 pathway, promoting antioxidant defenses and reducing oxidative damage in RA [116,117].

Peroxisome proliferator-activated receptor gamma (PPAR γ) agonists also play a role in targeting ROS in RA therapy. PPAR γ is a nuclear receptor that regulates lipid metabolism, glucose homeostasis, and inflammation. PPAR γ agonists, such as pioglitazone and rosiglitazone, have anti-inflammatory and antioxidant effects. These drugs can modulate the expression of antioxidant enzymes and reduce ROS production, thereby alleviating oxidative stress and inflammation in RA [118,119].

Another approach involves the use of natural compounds with antioxidant properties. Polyphenols, such as resveratrol, curcumin, and quercetin, possess strong antioxidant and anti-inflammatory activities. These compounds can scavenge ROS directly, modulate signaling pathways involved in oxidative stress, and enhance the expression of endogenous antioxidant enzymes. For example, resveratrol activates the SIRT1 pathway, which in turn activates Nrf2, leading to increased antioxidant defenses [120,121].

Therapies that modulate mitochondrial dynamics and function are also being explored. Mitochondrial dysfunction is a hallmark of RA, contributing to increased ROS production and cellular damage. Agents that promote mitochondrial biogenesis, such as peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1 α) activators, can enhance the generation of new mitochondria and improve mitochondrial efficiency. By boosting mitochondrial biogenesis, cells can better manage energy production and reduce ROS overproduction [122,123].

Table 2: Therapeutic Strategies Targeting ROS in RA

Strategy	Description
Antioxidants	Use of compounds like N-acetylcysteine (NAC) and vitamin E to neutralize ROS and enhance antioxidant defenses.
Mitochondria-Targeted Therapies	Application of agents like mitoquinone (MitoQ) to reduce mitochondrial ROS production directly.
NADPH Oxidase Inhibition	Use of inhibitors such as apocynin to decrease ROS generated by immune cells.
Nrf2 Activation	Compounds like bardoxolone methyl that stabilize Nrf2, enhancing expression of antioxidant enzymes.
Natural Compounds	Polyphenols (e.g., resveratrol, curcumin) with antioxidant properties that improve oxidative stress responses.

CONCLUSION

In conclusion, this review underscores the pivotal role of reactive oxygen species (ROS) in the pathophysiology of rheumatoid arthritis (RA). The accumulation of oxidative stress not only exacerbates inflammation but also contributes to joint damage and disease progression. By elucidating the mechanisms through which ROS influence immune responses and synovial inflammation, we highlight the urgent need for targeted therapeutic strategies. Antioxidant therapies, whether through natural compounds or novel pharmaceutical agents, show promise in mitigating oxidative damage and improving clinical outcomes in RA patients. Future research should prioritize clinical trials focusing on these interventions to establish their efficacy and safety. Ultimately, a deeper understanding of ROS in RA can lead to innovative treatments that enhance the quality of life for those affected by this debilitating condition.

Author Contributions: Writing—original draft preparation, A.V.P.; writing—review and editing, I.A.S., E.R.K., O.O.G., S.A.P., A.N.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Russian Science Foundation, grant number 25-15-00348

Conflicts of Interest: The authors declare no conflict of interest.

Ethics Approval: Not applicable.

Consent to Participate: Not applicable.

Consent to Publish: Not applicable.

Data Availability Statement: Not applicable.

REFERENCES

- [1] Ahmad, R. (2024). Introductory Chapter: Reactive Oxygen Species – Origin and Significance. IntechOpen. doi: 10.5772/intechopen.113767
- [2] Altenhöfer, S., Radermacher, K. A., Kleikers, P. W., Wingler, K., & Schmidt, H. H. (2015). Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement. *Antioxidants & redox signaling*, 23(5), 406–427. <https://doi.org/10.1089/ars.2013.5814>
- [3] André-Lévigne, D., Modarressi, A., Pepper, M. S., & Pittet-Cuénod, B. (2017). Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair. *International journal of molecular sciences*, 18(10), 2149. <https://doi.org/10.3390/ijms18102149>
- [4] Andrés, C. M. C., Pérez de la Lastra, J. M., Andrés Juan, C., Plou, F. J., & Pérez-Lebeña, E. (2023). Superoxide Anion Chemistry-Its Role at the Core of the Innate Immunity. *International journal of molecular sciences*, 24(3), 1841. <https://doi.org/10.3390/ijms24031841>
- [5] Aquilano, K., Baldelli, S., & Ciriolo, M. R. (2014). Glutathione: new roles in redox signaling for an old antioxidant. *Frontiers in pharmacology*, 5, 196. <https://doi.org/10.3389/fphar.2014.00196>
- [6] Ashok, A., Andrabi, S. S., Mansoor, S., Kuang, Y., Kwon, B. K., & Labhasetwar, V. (2022). Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. *Antioxidants (Basel, Switzerland)*, 11(2), 408. <https://doi.org/10.3390/antiox11020408>
- [7] Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. *Oxidative medicine and cellular longevity*, 2014, 360438. <https://doi.org/10.1155/2014/360438>
- [8] Batra, S., Balamayooran, G., & Sahoo, M. K. (2011). Nuclear factor- κ B: a key regulator in health and disease of lungs. *Archivum immunologiae et therapiae experimentalis*, 59(5), 335–351. <https://doi.org/10.1007/s00005-011-0136-z>
- [9] Bellezza, I., Giambanco, I., Minelli, A., & Donato, R. (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. *Biochimica et biophysica acta. Molecular cell research*, 1865(5), 721–733. <https://doi.org/10.1016/j.bbamcr.2018.02.010>
- [10] Berdiaki, A., Neagu, M., Spyridaki, I., Kuskov, A., Perez, S., & Nikitovic, D. (2023). Hyaluronan and Reactive Oxygen Species Signaling-Novel Cues from the Matrix?. *Antioxidants (Basel, Switzerland)*, 12(4), 824. <https://doi.org/10.3390/antiox12040824>
- [11] Bhatti, J. S., Bhatti, G. K., & Reddy, P. H. (2017). Mitochondrial dysfunction and oxidative stress in metabolic disorders - A step towards mitochondria based therapeutic strategies. *Biochimica et biophysica acta. Molecular basis of disease*, 1863(5), 1066–1077. <https://doi.org/10.1016/j.bbadiis.2016.11.010>

Oxidative Stress as a Driver of Rheumatoid Arthritis: Mechanisms, Clinical Biomarkers, and Therapeutic Targeting

[12] Biczak, R., Telesiński, A., & Pawłowska, B. (2016). Oxidative stress in spring barley and common radish exposed to quaternary ammonium salts with hexafluorophosphate anion. *Plant physiology and biochemistry : PPB*, 107, 248–256. <https://doi.org/10.1016/j.plaphy.2016.05.016>

[13] Bolduc, J. A., Collins, J. A., & Loeser, R. F. (2019). Reactive oxygen species, aging and articular cartilage homeostasis. *Free radical biology & medicine*, 132, 73–82. <https://doi.org/10.1016/j.freeradbiomed.2018.08.038>

[14] Burgoyne, J. R., Oka, S., Ale-Agha, N., & Eaton, P. (2013). Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system. *Antioxidants & redox signaling*, 18(9), 1042–1052. <https://doi.org/10.1089/ars.2012.4817>

[15] Cai, W., Yang, T., Liu, H., Han, L., Zhang, K., Hu, X., Zhang, X., Yin, K. J., Gao, Y., Bennett, M. V. L., Leak, R. K., & Chen, J. (2018). Peroxisome proliferator-activated receptor γ (PPAR γ): A master gatekeeper in CNS injury and repair. *Progress in neurobiology*, 163–164, 27–58. <https://doi.org/10.1016/j.pneurobio.2017.10.002>

[16] Cai, Z., & Yan, L. J. (2013). Protein Oxidative Modifications: Beneficial Roles in Disease and Health. *Journal of biochemical and pharmacological research*, 1(1), 15–26.

[17] Chaudhary, P., Jammeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. (2023). Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. *Frontiers in chemistry*, 11, 1158198. <https://doi.org/10.3389/fchem.2023.1158198>

[18] Checa, J., & Aran, J. M. (2020). Reactive Oxygen Species: Drivers of Physiological and Pathological Processes. *Journal of inflammation research*, 13, 1057–1073. <https://doi.org/10.2147/JIR.S275595>

[19] Chen, F., Yu, M., Zhong, Y., Wang, L., & Huang, H. (2022). Characteristics and Role of Neutrophil Extracellular Traps in Asthma. *Inflammation*, 45(1), 6–13. <https://doi.org/10.1007/s10753-021-01526-8>

[20] Chen, W., Zhao, H. & Li, Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. *Sig Transduct Target Ther* 8, 333 (2023). <https://doi.org/10.1038/s41392-023-01547-9>

[21] Chen, X., Guo, C., & Kong, J. (2012). Oxidative stress in neurodegenerative diseases. *Neural regeneration research*, 7(5), 376–385. <https://doi.org/10.3969/j.issn.1673-5374.2012.05.009>

[22] Cipriano, A., Viviano, M., Feoli, A., Milite, C., Sarno, G., Castellano, S., & Sbardella, G. (2023). NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. *Journal of medicinal chemistry*, 66(17), 11632–11655. <https://doi.org/10.1021/acs.jmedchem.3c00770>

[23] Collin F. (2019). Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases. *International journal of molecular sciences*, 20(10), 2407. <https://doi.org/10.3390/ijms20102407>

[24] Collins A. R. (2004). The comet assay for DNA damage and repair: principles, applications, and limitations. *Molecular biotechnology*, 26(3), 249–261. <https://doi.org/10.1385/MB:26:3:249>

[25] Colpman, P., Dasgupta, A., & Archer, S. L. (2023). The Role of Mitochondrial Dynamics and Mitotic Fission in Regulating the Cell Cycle in Cancer and Pulmonary Arterial Hypertension: Implications for Dynamin-Related Protein 1 and Mitofusin2 in Hyperproliferative Diseases. *Cells*, 12(14), 1897. <https://doi.org/10.3390/cells12141897>

[26] Corona, J. C., & Duchen, M. R. (2016). PPAR γ as a therapeutic target to rescue mitochondrial function in neurological disease. *Free radical biology & medicine*, 100, 153–163. <https://doi.org/10.1016/j.freeradbiomed.2016.06.023>

[27] de Almeida, A. J. P. O., de Oliveira, J. C. P. L., da Silva Pontes, L. V., de Souza Júnior, J. F., Gonçalves, T. A. F., Dantas, S. H., de Almeida Feitosa, M. S., Silva, A. O., & de Medeiros, I. A. (2022). ROS: Basic Concepts, Sources, Cellular Signaling, and its Implications in Aging Pathways. *Oxidative medicine and cellular longevity*, 2022, 1225578. <https://doi.org/10.1155/2022/1225578>

[28] Di Marzo, N., Chisci, E., & Giovannoni, R. (2018). The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. *Cells*, 7(10), 156. <https://doi.org/10.3390/cells7100156>

[29] Dömer, D., Walther, T., Möller, S., Behnen, M., & Laskay, T. (2021). Neutrophil Extracellular Traps Activate Proinflammatory Functions of Human Neutrophils. *Frontiers in immunology*, 12, 636954. <https://doi.org/10.3389/fimmu.2021.636954>

[30] Dorighello, G. G., Rovani, J. C., Paim, B. A., Rentz, T., Assis, L. H. P., Vercesi, A. E., & Oliveira, H. C. F. (2022). Mild Mitochondrial Uncoupling Decreases Experimental Atherosclerosis, A Proof of Concept. *Journal of atherosclerosis and thrombosis*, 29(6), 825–838. <https://doi.org/10.5551/jat.62796>

[31] Dustin, C. M., Heppner, D. E., Lin, M. J., & van der Vliet, A. (2020). Redox regulation of tyrosine kinase signalling: more than meets the eye. *Journal of biochemistry*, 167(2), 151–163. <https://doi.org/10.1093/jb/mvz085>

[32] Edilova, M. I., Akram, A., & Abdul-Sater, A. A. (2021). Innate immunity drives pathogenesis of rheumatoid arthritis. *Biomedical journal*, 44(2), 172–182. <https://doi.org/10.1016/j.bj.2020.06.010>

[33] Escribano-Lopez, I., Bañuls, C., Diaz-Morales, N., Iannantuoni, F., Rovira-Llopis, S., Gomis, R., Rocha, M., Hernandez-Mijares, A., Murphy, M. P., & Victor, V. M. (2019). The Mitochondria-Targeted Antioxidant MitoQ Modulates Mitochondrial Function and Endoplasmic Reticulum Stress in Pancreatic β Cells Exposed to

Oxidative Stress as a Driver of Rheumatoid Arthritis: Mechanisms, Clinical Biomarkers, and Therapeutic Targeting

Hyperglycaemia. *Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology*, 52(2), 186–197. <https://doi.org/10.33594/000000013>

[34] Fields, M., Marcuzzi, A., Gonelli, A., Celeghini, C., Maximova, N., & Rimondi, E. (2023). Mitochondria-Targeted Antioxidants, an Innovative Class of Antioxidant Compounds for Neurodegenerative Diseases: Perspectives and Limitations. *International journal of molecular sciences*, 24(4), 3739. <https://doi.org/10.3390/ijms24043739>

[35] Fisher-Wellman, K., Bell, H. K., & Bloomer, R. J. (2009). Oxidative stress and antioxidant defense mechanisms linked to exercise during cardiopulmonary and metabolic disorders. *Oxidative medicine and cellular longevity*, 2(1), 43–51. <https://doi.org/10.4161/oxim.2.1.7732>

[36] Fujii, J., Homma, T., & Osaki, T. (2022). Superoxide Radicals in the Execution of Cell Death. *Antioxidants (Basel, Switzerland)*, 11(3), 501. <https://doi.org/10.3390/antiox11030501>

[37] Fukai, T., & Ushio-Fukai, M. (2011). Superoxide dismutases: role in redox signaling, vascular function, and diseases. *Antioxidants & redox signaling*, 15(6), 1583–1606. <https://doi.org/10.1089/ars.2011.3999>

[38] Gao, Y., Zhang, Y., & Liu, X. (2024). Rheumatoid arthritis: pathogenesis and therapeutic advances. *MedComm*, 5(3), e509. <https://doi.org/10.1002/mco2.509>

[39] Goedeke, L., & Shulman, G. I. (2021). Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. *Molecular metabolism*, 46, 101178. <https://doi.org/10.1016/j.molmet.2021.101178>

[40] Gorini, F., Scala, G., Cooke, M. S., Majello, B., & Amenta, S. (2021). Towards a comprehensive view of 8-oxo-7,8-dihydro-2'-deoxyguanosine: Highlighting the intertwined roles of DNA damage and epigenetics in genomic instability. *DNA repair*, 97, 103027. <https://doi.org/10.1016/j.dnarep.2020.103027>

[41] Guo, W., Xing, Y., Luo, X., Li, F., Ren, M., & Liang, Y. (2023). Reactive Oxygen Species: A Crosslink between Plant and Human Eukaryotic Cell Systems. *International journal of molecular sciences*, 24(17), 13052. <https://doi.org/10.3390/ijms241713052>

[42] Hammad, M., Raftari, M., Cesário, R., Salma, R., Godoy, P., Emami, S. N., & Haghdoost, S. (2023). Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. *Antioxidants (Basel, Switzerland)*, 12(7), 1371. <https://doi.org/10.3390/antiox12071371>

[43] He, F., Ru, X., & Wen, T. (2020). NRF2, a Transcription Factor for Stress Response and Beyond. *International journal of molecular sciences*, 21(13), 4777. <https://doi.org/10.3390/ijms21134777>

[44] Hong, Y., Boiti, A., Vallone, D., & Foulkes, N. S. (2024). Reactive Oxygen Species Signaling and Oxidative Stress: Transcriptional Regulation and Evolution. *Antioxidants (Basel, Switzerland)*, 13(3), 312. <https://doi.org/10.3390/antiox13030312>

[45] Hopkins, B. L., & Neumann, C. A. (2019). Redoxins as gatekeepers of the transcriptional oxidative stress response. *Redox biology*, 21, 101104. <https://doi.org/10.1016/j.redox.2019.101104>

[46] Jamwal, S., Blackburn, J. K., & Elsworth, J. D. (2021). PPAR γ /PGC1 α signaling as a potential therapeutic target for mitochondrial biogenesis in neurodegenerative disorders. *Pharmacology & therapeutics*, 219, 107705. <https://doi.org/10.1016/j.pharmthera.2020.107705>

[47] Jena, A. B., Samal, R. R., Bhol, N. K., & Duttaroy, A. K. (2023). Cellular Red-Ox system in health and disease: The latest update. *Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie*, 162, 114606. <https://doi.org/10.1016/j.bioph.2023.114606>

[48] Jomova, K., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2024). Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. *Archives of toxicology*, 98(5), 1323–1367. <https://doi.org/10.1007/s00204-024-03696-4>

[49] Jomova, K., Raptova, R., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K., & Valko, M. (2023). Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. *Archives of toxicology*, 97(10), 2499–2574. <https://doi.org/10.1007/s00204-023-03562-9>

[50] Juan, C. A., Pérez de la Lastra, J. M., Plou, F. J., & Pérez-Lebeña, E. (2021). The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. *International journal of molecular sciences*, 22(9), 4642. <https://doi.org/10.3390/ijms22094642>

[51] Kaludercic, N., & Giorgio, V. (2016). The Dual Function of Reactive Oxygen/Nitrogen Species in Bioenergetics and Cell Death: The Role of ATP Synthase. *Oxidative medicine and cellular longevity*, 2016, 3869610. <https://doi.org/10.1155/2016/3869610>

[52] Ke P. Y. (2024). Molecular Mechanism of Autophagosome-Lysosome Fusion in Mammalian Cells. *Cells*, 13(6), 500. <https://doi.org/10.3390/cells13060500>

[53] Kehm, R., Baldensperger, T., Raupbach, J., & Höhn, A. (2021). Protein oxidation - Formation mechanisms, detection and relevance as biomarkers in human diseases. *Redox biology*, 42, 101901. <https://doi.org/10.1016/j.redox.2021.101901>

Oxidative Stress as a Driver of Rheumatoid Arthritis: Mechanisms, Clinical Biomarkers, and Therapeutic Targeting

[54] Khandia, R., Dadar, M., Munjal, A., Dhama, K., Karthik, K., Tiwari, R., Yatoo, M. I., Iqbal, H. M. N., Singh, K. P., Joshi, S. K., & Chaicumpa, W. (2019). A Comprehensive Review of Autophagy and Its Various Roles in Infectious, Non-Infectious, and Lifestyle Diseases: Current Knowledge and Prospects for Disease Prevention, Novel Drug Design, and Therapy. *Cells*, 8(7), 674. <https://doi.org/10.3390/cells8070674>

[55] Kiełbowski, K., Stańska, W., Bakinowska, E., Rusiński, M., & Pawlik, A. (2024). The Role of Alarmins in the Pathogenesis of Rheumatoid Arthritis, Osteoarthritis, and Psoriasis. *Current issues in molecular biology*, 46(4), 3640–3675. <https://doi.org/10.3390/cimb46040228>

[56] Klomsvi, C., Karplus, P. A., & Poole, L. B. (2011). Cysteine-based redox switches in enzymes. *Antioxidants & redox signaling*, 14(6), 1065–1077. <https://doi.org/10.1089/ars.2010.3376>

[57] Kondo, N., Kanai, T., & Okada, M. (2023). Rheumatoid Arthritis and Reactive Oxygen Species: A Review. *Current issues in molecular biology*, 45(4), 3000–3015. <https://doi.org/10.3390/cimb45040197>

[58] Lennicke, C., & Cochemé, H. M. (2021). Redox metabolism: ROS as specific molecular regulators of cell signaling and function. *Molecular cell*, 81(18), 3691–3707. <https://doi.org/10.1016/j.molcel.2021.08.018>

[59] Lepetsos, P., & Papavassiliou, A. G. (2016). ROS/oxidative stress signaling in osteoarthritis. *Biochimica et biophysica acta*, 1862(4), 576–591. <https://doi.org/10.1016/j.bbadi.2016.01.003>

[60] Lingappan K. (2018). NF-κB in Oxidative Stress. *Current opinion in toxicology*, 7, 81–86. <https://doi.org/10.1016/j.cotox.2017.11.002>

[61] Lingappan K. (2018). NF-κB in Oxidative Stress. *Current opinion in toxicology*, 7, 81–86. <https://doi.org/10.1016/j.cotox.2017.11.002>

[62] Liu, S., Pi, J., & Zhang, Q. (2022). Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. *Redox biology*, 54, 102389. <https://doi.org/10.1016/j.redox.2022.102389>

[63] Liu, S., Pi, J., & Zhang, Q. (2022). Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. *Redox biology*, 54, 102389. <https://doi.org/10.1016/j.redox.2022.102389>

[64] Liu, Z., Deng, P., Liu, S., Bian, Y., Xu, Y., Zhang, Q., Wang, H., & Pi, J. (2023). Is Nuclear Factor Erythroid 2-Related Factor 2 a Target for the Intervention of Cytokine Storms?. *Antioxidants (Basel, Switzerland)*, 12(1), 172. <https://doi.org/10.3390/antiox12010172>

[65] Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. *Pharmacognosy reviews*, 4(8), 118–126. <https://doi.org/10.4103/0973-7847.70902>

[66] Lv, H., Zhen, C., Liu, J., Yang, P., Hu, L., & Shang, P. (2019). Unraveling the Potential Role of Glutathione in Multiple Forms of Cell Death in Cancer Therapy. *Oxidative medicine and cellular longevity*, 2019, 3150145. <https://doi.org/10.1155/2019/3150145>

[67] Ma Q. (2013). Role of nrf2 in oxidative stress and toxicity. *Annual review of pharmacology and toxicology*, 53, 401–426. <https://doi.org/10.1146/annurev-pharmtox-011112-140320>

[68] Maynard, S., Schurman, S. H., Harboe, C., de Souza-Pinto, N. C., & Bohr, V. A. (2009). Base excision repair of oxidative DNA damage and association with cancer and aging. *Carcinogenesis*, 30(1), 2–10. <https://doi.org/10.1093/carcin/bgn250>

[69] Meulmeester, F. L., Luo, J., Martens, L. G., Mills, K., van Heemst, D., & Noordam, R. (2022). Antioxidant Supplementation in Oxidative Stress-Related Diseases: What Have We Learned from Studies on Alpha-Tocopherol?. *Antioxidants (Basel, Switzerland)*, 11(12), 2322. <https://doi.org/10.3390/antiox11122322>

[70] Misrani, A., Tabassum, S., & Yang, L. (2021). Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. *Frontiers in aging neuroscience*, 13, 617588. <https://doi.org/10.3389/fnagi.2021.617588>

[71] Nandakumar, K. S., Fang, Q., Wingbro Ågren, I., & Bejmo, Z. F. (2023). Aberrant Activation of Immune and Non-Immune Cells Contributes to Joint Inflammation and Bone Degradation in Rheumatoid Arthritis. *International journal of molecular sciences*, 24(21), 15883. <https://doi.org/10.3390/ijms242115883>

[72] Nandhakumar, S., Parasuraman, S., Shanmugam, M. M., Rao, K. R., Chand, P., & Bhat, B. V. (2011). Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). *Journal of pharmacology & pharmacotherapeutics*, 2(2), 107–111. <https://doi.org/10.4103/0976-500X.81903>

[73] Netto, L. E., & Antunes, F. (2016). The Roles of Peroxiredoxin and Thioredoxin in Hydrogen Peroxide Sensing and in Signal Transduction. *Molecules and cells*, 39(1), 65–71. <https://doi.org/10.14348/molcells.2016.2349>

[74] Ngo, V., & Duennwald, M. L. (2022). Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. *Antioxidants (Basel, Switzerland)*, 11(12), 2345. <https://doi.org/10.3390/antiox11122345>

[75] Nguyen, G. T., Green, E. R., & Mecsas, J. (2017). Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. *Frontiers in cellular and infection microbiology*, 7, 373. <https://doi.org/10.3389/fcimb.2017.00373>

[76] Oeckinghaus, A., & Ghosh, S. (2009). The NF-κappaB family of transcription factors and its regulation. *Cold Spring Harbor perspectives in biology*, 1(4), a000034. <https://doi.org/10.1101/cshperspect.a000034>

Oxidative Stress as a Driver of Rheumatoid Arthritis: Mechanisms, Clinical Biomarkers, and Therapeutic Targeting

[77] Olufunmilayo, E. O., Gerke-Duncan, M. B., & Holsinger, R. M. D. (2023). Oxidative Stress and Antioxidants in Neurodegenerative Disorders. *Antioxidants (Basel, Switzerland)*, 12(2), 517. <https://doi.org/10.3390/antiox12020517>

[78] Olufunmilayo, E. O., Gerke-Duncan, M. B., & Holsinger, R. M. D. (2023). Oxidative Stress and Antioxidants in Neurodegenerative Disorders. *Antioxidants (Basel, Switzerland)*, 12(2), 517. <https://doi.org/10.3390/antiox12020517>

[79] Ornatowski, W., Lu, Q., Yegambaram, M., Garcia, A. E., Zemskov, E. A., Maltepe, E., Fineman, J. R., Wang, T., & Black, S. M. (2020). Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. *Redox biology*, 36, 101679. <https://doi.org/10.1016/j.redox.2020.101679>

[80] Ornatowski, W., Lu, Q., Yegambaram, M., Garcia, A. E., Zemskov, E. A., Maltepe, E., Fineman, J. R., Wang, T., & Black, S. M. (2020). Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. *Redox biology*, 36, 101679. <https://doi.org/10.1016/j.redox.2020.101679>

[81] Paramasivan, P., Kankia, I. H., Langdon, S. P., & Deeni, Y. Y. (2019). Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies. *Cancer drug resistance (Alhambra, Calif.)*, 2(3), 490–515. <https://doi.org/10.20517/cdr.2019.57>

[82] Parzych, K. R., & Klionsky, D. J. (2014). An overview of autophagy: morphology, mechanism, and regulation. *Antioxidants & redox signaling*, 20(3), 460–473. <https://doi.org/10.1089/ars.2013.5371>

[83] Patel, J. P., Konanur Srinivasa, N. K., Gande, A., Anusha, M., Dar, H., & Baji, D. B. (2023). The Role of Biologics in Rheumatoid Arthritis: A Narrative Review. *Cureus*, 15(1), e33293. <https://doi.org/10.7759/cureus.33293>

[84] Peng, X., Wang, Q., Li, W., Ge, G., Peng, J., Xu, Y., Yang, H., Bai, J., & Geng, D. (2023). Comprehensive overview of microRNA function in rheumatoid arthritis. *Bone research*, 11(1), 8. <https://doi.org/10.1038/s41413-023-00244-1>

[85] Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. *International journal of biomedical science : IJBS*, 4(2), 89–96.

[86] Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. *Indian journal of clinical biochemistry : IJCB*, 30(1), 11–26. <https://doi.org/10.1007/s12291-014-0446-0>

[87] Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. *Oxidative medicine and cellular longevity*, 2017, 8416763. <https://doi.org/10.1155/2017/8416763>

[88] Rajput, V. D., Harish, Singh, R. K., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R., Meena, M., Gour, V. S., Minkina, T., Sushkova, S., & Mandzhieva, S. (2021). Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. *Biology*, 10(4), 267. <https://doi.org/10.3390/biology10040267>

[89] Rawat, K., & Shrivastava, A. (2022). Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. *Inflammation research : official journal of the European Histamine Research Society ... [et al.]*, 71(12), 1477–1488. <https://doi.org/10.1007/s00011-022-01627-6>

[90] Riaz, B., & Sohn, S. (2023). Neutrophils in Inflammatory Diseases: Unraveling the Impact of Their Derived Molecules and Heterogeneity. *Cells*, 12(22), 2621. <https://doi.org/10.3390/cells12222621>

[91] Rosales C. (2018). Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types?. *Frontiers in physiology*, 9, 113. <https://doi.org/10.3389/fphys.2018.00113>

[92] Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. B., Ansari, M. A., Alomary, M. N., Alshabrm, F. M., Palai, S., Deb, P. K., & Devi, R. (2022). Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. *Frontiers in pharmacology*, 13, 806470. <https://doi.org/10.3389/fphar.2022.806470>

[93] Rushworth, G. F., & Megson, I. L. (2014). Existing and potential therapeutic uses for N-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. *Pharmacology & therapeutics*, 141(2), 150–159. <https://doi.org/10.1016/j.pharmthera.2013.09.006>

[94] Ryter, S. W., Cloonan, S. M., & Choi, A. M. (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. *Molecules and cells*, 36(1), 7–16. <https://doi.org/10.1007/s10059-013-0140-8>

[95] Sahasrabudhe, S. A., Terluk, M. R., & Kartha, R. V. (2023). N-acetylcysteine Pharmacology and Applications in Rare Diseases-Repurposing an Old Antioxidant. *Antioxidants (Basel, Switzerland)*, 12(7), 1316. <https://doi.org/10.3390/antiox12071316>

[96] Santhakumar, A. B., Bulmer, A. C., & Singh, I. (2014). A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. *Journal of human nutrition and dietetics : the official journal of the British Dietetic Association*, 27(1), 1–21. <https://doi.org/10.1111/jhn.12177>

[97] Santhakumar, A. B., Bulmer, A. C., & Singh, I. (2014). A review of the mechanisms and effectiveness of dietary polyphenols in reducing oxidative stress and thrombotic risk. *Journal of human nutrition and dietetics : the official journal of the British Dietetic Association*, 27(1), 1–21. <https://doi.org/10.1111/jhn.12177>

[98] Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. *Current biology : CB*, 24(10), R453–R462. <https://doi.org/10.1016/j.cub.2014.03.034>

[99] Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouty, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., ... Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. *Frontiers in physiology*, 11, 694. <https://doi.org/10.3389/fphys.2020.00694>

[100] Sharma, V., & Patial, V. (2022). Peroxisome proliferator-activated receptor gamma and its natural agonists in the treatment of kidney diseases. *Frontiers in pharmacology*, 13, 991059. <https://doi.org/10.3389/fphar.2022.991059>

[101] Shrestha, R., Johnson, E., & Byrne, F. L. (2021). Exploring the therapeutic potential of mitochondrial uncouplers in cancer. *Molecular metabolism*, 51, 101222. <https://doi.org/10.1016/j.molmet.2021.101222>

[102] Shrestha, S., Lee, J. M., & Hong, C. W. (2020). Autophagy in neutrophils. *The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology*, 24(1), 1–10. <https://doi.org/10.4196/kjpp.2020.24.1.1>

[103] Sinenko, S. A., Starkova, T. Y., Kuzmin, A. A., & Tomilin, A. N. (2021). Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. *Frontiers in cell and developmental biology*, 9, 714370. <https://doi.org/10.3389/fcell.2021.714370>

[104] Singh, S., Singh, T. G., Mahajan, K., & Dhiman, S. (2020). Medicinal plants used against various inflammatory biomarkers for the management of rheumatoid arthritis. *The Journal of pharmacy and pharmacology*, 72(10), 1306–1327. <https://doi.org/10.1111/jphp.13326>

[105] Su, L. J., Zhang, J. H., Gomez, H., Murugan, R., Hong, X., Xu, D., Jiang, F., & Peng, Z. Y. (2019). Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. *Oxidative medicine and cellular longevity*, 2019, 5080843. <https://doi.org/10.1155/2019/5080843>

[106] Talebi, M., Mohammadi Vadoud, S. A., Haratian, A., Talebi, M., Farkhondeh, T., Pourbagher-Shahri, A. M., & Samarghandian, S. (2022). The interplay between oxidative stress and autophagy: focus on the development of neurological diseases. *Behavioral and brain functions : BBF*, 18(1), 3. <https://doi.org/10.1186/s12993-022-00187-3>

[107] Tenório, M. C. D. S., Graciliano, N. G., Moura, F. A., Oliveira, A. C. M., & Goulart, M. O. F. (2021). N-Acetylcysteine (NAC): Impacts on Human Health. *Antioxidants (Basel, Switzerland)*, 10(6), 967. <https://doi.org/10.3390/antiox10060967>

[108] Toualbi, L. A., Mounir, A., Wafa, B., Medina, A., Abderrezak, K., Chahine, T., Henni, C., Abdelghani, B., & Atmane, S. (2021). Implications of advanced oxidation protein products and vitamin E in atherosclerosis progression. *Archives of medical sciences. Atherosclerotic diseases*, 6, e135–e144. <https://doi.org/10.5114/amsad.2021.107823>

[109] Tripathi, R., Gupta, R., Sahu, M., Srivastava, D., Das, A., Ambasta, R. K., & Kumar, P. (2022). Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. *Environmental science and pollution research international*, 29(41), 62160–62207. <https://doi.org/10.1007/s11356-021-16693-2>

[110] Tsikas D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. *Analytical biochemistry*, 524, 13–30. <https://doi.org/10.1016/j.ab.2016.10.021>

[111] Vašková, J., Kočan, L., Vaško, L., & Perjési, P. (2023). Glutathione-Related Enzymes and Proteins: A Review. *Molecules (Basel, Switzerland)*, 28(3), 1447. <https://doi.org/10.3390/molecules28031447>

[112] Vomund, S., Schäfer, A., Parnham, M. J., Brüne, B., & von Knethen, A. (2017). Nrf2, the Master Regulator of Anti-Oxidative Responses. *International journal of molecular sciences*, 18(12), 2772. <https://doi.org/10.3390/ijms18122772>

[113] Vona, R., Pallotta, L., Cappelletti, M., Severi, C., & Matarrese, P. (2021). The Impact of Oxidative Stress in Human Pathology: Focus on Gastrointestinal Disorders. *Antioxidants (Basel, Switzerland)*, 10(2), 201. <https://doi.org/10.3390/antiox10020201>

[114] Voronina, M. V., Frolova, A. S., Kolesova, E. P., Kuldyushev, N. A., Parodi, A., & Zamyatnin, A. A., Jr (2024). The Intricate Balance between Life and Death: ROS, Cathepsins, and Their Interplay in Cell Death and Autophagy. *International journal of molecular sciences*, 25(7), 4087. <https://doi.org/10.3390/ijms25074087>

[115] Wang, X., Fan, D., Cao, X., Ye, Q., Wang, Q., Zhang, M., & Xiao, C. (2022). The Role of Reactive Oxygen Species in the Rheumatoid Arthritis-Associated Synovial Microenvironment. *Antioxidants (Basel, Switzerland)*, 11(6), 1153. <https://doi.org/10.3390/antiox11061153>

Oxidative Stress as a Driver of Rheumatoid Arthritis: Mechanisms, Clinical Biomarkers, and Therapeutic Targeting

[116] Wang, Y., Branicky, R., Noë, A., & Hekimi, S. (2018). Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. *The Journal of cell biology*, 217(6), 1915–1928. <https://doi.org/10.1083/jcb.201708007>

[117] Xue, C., Tian, J., Cui, Z., Liu, Y., Sun, D., Xiong, M., Yi, N., Wang, K., Li, X., Wang, Y., Xu, H., Zhang, W., & Liang, Q. (2023). Reactive oxygen species (ROS)-mediated M1 macrophage-dependent nanomedicine remodels inflammatory microenvironment for osteoarthritis recession. *Bioactive materials*, 33, 545–561. <https://doi.org/10.1016/j.bioactmat.2023.10.032>

[118] Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. *Nutrients*, 10(11), 1618. <https://doi.org/10.3390/nu10111618>

[119] Yu, C., & Xiao, J. H. (2021). The Keap1-Nrf2 System: A Mediator between Oxidative Stress and Aging. *Oxidative medicine and cellular longevity*, 2021, 6635460. <https://doi.org/10.1155/2021/6635460>

[120] Zeng, M. Y., Miralda, I., Armstrong, C. L., Uriarte, S. M., & Bagaitkar, J. (2019). The roles of NADPH oxidase in modulating neutrophil effector responses. *Molecular oral microbiology*, 34(2), 27–38. <https://doi.org/10.1111/omi.12252>

[121] Zerihun, M., Sukumaran, S., & Qvit, N. (2023). The Drp1-Mediated Mitochondrial Fission Protein Interactome as an Emerging Core Player in Mitochondrial Dynamics and Cardiovascular Disease Therapy. *International journal of molecular sciences*, 24(6), 5785. <https://doi.org/10.3390/ijms24065785>

[122] Zhao Z. (2019). Iron and oxidizing species in oxidative stress and Alzheimer's disease. *Aging medicine (Milton (N.S.W.))*, 2(2), 82–87. <https://doi.org/10.1002/agm2.12074>

[123] Zlatar, L., Mahajan, A., Muñoz-Becerra, M., Weidner, D., Bila, G., Bilyy, R., Titze, J., Hoffmann, M. H., Schett, G., Herrmann, M., Steffen, U., Muñoz, L. E., & Knopf, J. (2023). Suppression of neutrophils by sodium exacerbates oxidative stress and arthritis. *Frontiers in immunology*, 14, 1174537. <https://doi.org/10.3389/fimmu.2023.1174537>