

Experimental Models of Parkinson's Disease: Strengths, Limitations, and Translational Perspectives

Anastasia V. Poznyak^{1*}, Mariam Bagheri Ekta², Fu Changgeng³, Li Hongzheng⁴, Elizaveta Romanovna Korchagina¹, Alexander N. Orekhov¹

¹Institute for Atherosclerosis Research, Osennyya 4-1-207, 121609 Moscow, Russia

²Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, Petrovsky Russian National Center of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia

³National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China academy of Chinese Medical Sciences, Beijing, 100195, China

⁴Postdoctoral research center, China academy of Chinese Medical Sciences, Beijing, 100053, China; Guang'an men hospital, China academy of Chinese Medical Sciences, Beijing, 100195, China

ABSTRACT

Parkinson's disease (PD) is a progressive neurodegenerative disorder marked by the selective loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of α -synuclein aggregates. Despite extensive research, the precise molecular triggers of PD remain unclear, and current treatments primarily address symptoms rather than halting disease progression. Experimental animal models have been indispensable for dissecting the pathophysiological mechanisms underlying PD and for testing novel therapeutic interventions. This review summarizes the principal animal models of PD, including rodents, non-human primates, and non-mammalian organisms such as *C. elegans*, *Drosophila melanogaster*, and zebrafish. Both genetic models—based on mutations in SNCA, LRRK2, PINK1, PARKIN, and DJ-1—and neurotoxin-induced models, such as MPTP, 6-OHDA, rotenone, paraquat, and drug-induced parkinsonism, are discussed in relation to their mechanistic fidelity and translational value. Understanding the strengths and limitations of these models is critical for bridging the gap between preclinical findings and clinical applications. Integrating insights across model systems may advance the development of disease-modifying therapies for PD.

How to Cite: Anastasia V. Poznyak, Mariam Bagheri Ekta, Fu Changgeng, Li Hongzheng, Elizaveta Romanovna Korchagina, Alexander N. Orekhov, (2025) Experimental Models of Parkinson's Disease: Strengths, Limitations, and Translational Perspectives, *Journal of Carcinogenesis*, Vol.24, No.8s, 1121-1135

1. INTRODUCTION

Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder linked to aging, impacting up to 3% of individuals over the age of 65. It is characterized as a progressive, multifaceted, and diverse condition. Those afflicted with PD experience motor impairments, including resting tremors, stiffness, and slow movement. The primary cause of these symptoms is the deterioration of dopamine (DA) producing neurons in a region of the brain known as the substantia nigra pars compacta (SNpc) [1,2]. Beyond motor issues, PD is also associated with a range of non-motor symptoms such as sleep disturbances, autonomic dysfunction, cognitive and psychiatric issues, gastrointestinal problems, changes in weight and vision, and fatigue. The development of the disease correlates with the buildup of Lewy bodies, which are clumps of the protein α -synuclein (α -syn). The exact reason for the loss of DA neurons is still a mystery, though evidence suggests it may be related to problems with protein clearance by the proteasome, mitochondrial dysfunction, and inflammation in the brain [3-5]. Despite a thorough understanding of its characteristics, PD can only be definitively diagnosed through an autopsy after death, and the initial cause of the disease remains elusive.

In research, animal models have been developed to mimic aspects of PD pathology, but they only partially replicate the signs observed in humans. These models do not fully capture the onset, progression, and outcome of the disease as seen in patients. However, they are still vital for investigating the complex brain networks involved in the disease and for testing potential treatments [6,7]. The selection of an appropriate animal model is critical, and the results from such studies need to be considered within the context of the model's specific limitations. This review covers a broad spectrum of animal models used in PD research, including rodents, non-human primates, and non-mammalian species like *Drosophila* (fruit flies) and *C. elegans* (nematodes) [8,9].

2. COMMON LABORATORY ANIMALS USED TO MODEL PD

Rodents

Rodents are highly favored as animal models in various research domains due to their ease of handling and minimal care requirements. They do not necessitate complex or difficult-to-maintain breeding and management conditions. These small-sized animals share a degree of anatomical similarity with humans, making them suitable for certain types of research. Rats and mice, in particular, are commonly utilized to simulate PD because of the observable link between motor impairments and the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). PD in these animals can be triggered through pharmacological means or by specific genetic modifications, leading to what are known as transgenic rodents [10,11].

The use of pharmacological or toxin-based methods to induce PD often does not mirror the molecular characteristics of human parkinsonism but is valuable for studying the motor, non-motor, and behavioral symptoms of PD. These symptoms include bradykinesia (assessed through the pole test), locomotor activity (evaluated via the open field test), akinesia (measured with the stepping test), as well as strength, balance, and coordination (tested through the rotarod test). Additionally, the daily activities of the animals, such as drinking, sleeping, and eating, along with any compulsive behaviors or signs of apathy, are monitored [12,13].

Conversely, genetic models may offer a closer representation of familial PD. Although genetic modifications can lead to various molecular abnormalities associated with PD, such as mitochondrial dysfunction, impaired mitophagy, ubiquitin-proteasome system issues, and altered reactive oxygen species (ROS) production, they often do not replicate key pathological features of PD, including the presence of Lewy bodies and the loss of DA neurons [14-16].

3. NON-HUMAN PRIMATES (NHPs)

Non-human primates share significant genetic and physiological similarities with humans, making them invaluable for advancing our understanding of disease mechanisms, including those underlying PD. Despite their importance, the use of NHPs in research is constrained by ethical considerations, high costs, and the extensive effort and resources needed for their care. Nevertheless, for pre-clinical therapeutic evaluations, research involving NHPs can be pursued when necessary. NHP species such as macaques, marmosets, squirrel monkeys, baboons, and African green monkeys are frequently employed to model PD [17-19].

PD in NHPs can be induced through the administration of neurotoxins like MPTP and 6-OHDA or through genetic manipulation. Genetic methods to model PD include the use of viral vectors to overexpress genes associated with PD, such as α -synuclein and LRRK2, or to create knockout or knockdown models for genes like PINK1, Parkin, and DJ-1. Notably, the introduction of mutated human α -synuclein gene via adeno-associated virus (AAV) vectors in monkeys and macaques has led to the observation of both motor and neuropathological features characteristic of PD [20,21].

NHP models of PD not only exhibit symptoms seen in human patients, such as chorea and dystonia, but also share similar sleep patterns, making them superior to rodent models for certain research purposes. Neuroimaging studies have further validated the reliability of NHP models in providing crucial insights into PD. Importantly, the presence of Lewy bodies, a key pathological marker of PD, can be observed in NHPs, a distinction not found in other animal models [22,23].

Despite their significant contributions to PD research, the use of NHPs is limited by the need for specialized skills, expertise, and considerable time and support. This underscores the complexity and challenges involved in utilizing NHPs for scientific investigation, even as they remain a critical resource for understanding and developing treatments for PD [24,25].

4. NON-MAMMALIAN SPECIES (NMSS)

This collection includes tiny creatures like *C. (Caenorhabditis) elegans*, zebrafish, and *Drosophila melanogaster*, among others. Their characteristics, including minimal upkeep expenses and brief lifecycles, make them perfect subjects for studies, particularly those focused on genetics and gene editing. Key attributes of these organisms are their distinct neuropathological traits and measurable behaviors. They are particularly valuable in conducting whole-genome sequencing studies and extensive drug discovery trials [26,27].

5. CAENORHABDITIS ELEGANS

The nematode *C. elegans* possesses a neural network comprising 302 neurons, including 8 dopaminergic neurons. It expresses counterparts of several human genes linked to familial Parkinson's disease (PD), such as LRRK2 (lrk-1), PINK1 (pink1), PARKIN (pdr-1), and DJ-1 (dnaj-1.1, dnaj-1.2), although it does not express the α -synuclein gene. This model organism was utilized by Sydney Brenner in the 1970s to explore the genetic foundations of neuromuscular functions. The precise count of eight 'anatomically defined' dopaminergic neurons in *C. elegans* enables accurate measurement of

neurodegeneration, which can be influenced by various stress factors [28,29].

6. DROSOPHILA MELANOGASTER

The fruit fly, *Drosophila*, possesses a clearly organized nervous system, with its adult brain containing a cluster of dopamine-producing neurons, approximately 200 in number. This makes it an excellent model for replicating and investigating the neurodegeneration associated with PD. Symptoms of PD, including loss of dopaminergic neurons, formation of inclusion bodies, oxidative stress, and impaired movement, have been observed in *Drosophila* when subjected to neurotoxins or when expressing wild-type or mutant forms of α -synuclein. The genetic model provided by *Drosophila* serves as a powerful tool for exploring the roles of genes linked to PD, a topic that will be explored in greater depth later in this review [30,31].

Zebrafish

Zebrafish have undergone thorough research in the development and progression of PD. When exposed to neurotoxins, these fish display changes in their movement patterns. They can replicate the essential biochemical, structural, neurochemical, and behavioral characteristics of PD. The genes in zebrafish that are equivalent to human genes associated with PD are highly conserved in both their function and sequence [32,33].

7. GENETIC ANIMAL MODELS

The exploration of genetic mutations in Parkinson's disease is grounded in the clinical similarities observed between its sporadic and inherited versions, both of which share a common mechanism that aids in pinpointing molecular and biochemical pathways involved in the development of the disease. Studies in animal models with gene defects have revealed various cellular and molecular abnormalities, including impaired mitophagy, malfunctioning of the ubiquitin-proteasome system, fragmented mitochondria, and altered ROS levels [34,35]. Nonetheless, the pathological and behavioral manifestations in genetic models of Parkinson's disease differ from those seen in humans, as some models do not exhibit significant loss of dopaminergic neurons, which is a critical characteristic of the disease. Genetic mutations offer a promising avenue for uncovering the mechanisms underlying Parkinson's disease and identifying new targets for therapeutic intervention [36-38]. In the following section, genetic models that encapsulate the mutations identified in familial cases of Parkinson's disease will be discussed.

α -Synuclein

The α -Syn gene is crucial for synaptic vesicle recycling. Mutations in the α -Syn gene, specifically PARK1 with A30P, A53T, and E46K mutations, are associated with autosomal dominant PD. α -Syn's role is underscored by its significant presence in Lewy bodies and its involvement in PD pathogenesis through gene duplication or triplication. Various PD models, including transgenic mice, intracerebral protein injections, grafting, and viral expression techniques, have been developed based on α -Syn mutations [39,40]. Despite some models showing reduced DA or tyrosine hydroxylase (TH) levels and behavioral changes, significant nigrostriatal degeneration is often absent. Behavioral changes were noted in A30P and A53T mouse models, but these did not lead to cell loss in the SNpc or locus caeruleus. Similar outcomes were seen with the hamster prion promoter. Mice with the platelet-derived growth factor subunit B (PDGF- β) promoter showed DA cell and terminal loss in the striatum without TH+ loss. Few studies using the Th promoter reported TH+ cell loss, but α -Syn pathology was effectively induced by the Thy-1 promoter, leading to reduced striatal DA levels and dopaminergic neurodegeneration in the SNpc [41,42]. Overexpression of α -Syn A53T in DA neurons via the Pitx3 promoter in tetracycline-regulated transgenic mice resulted in motor impairments and midbrain neurodegeneration, alongside decreased DA release and impaired autophagy. Additionally, new bacterial artificial chromosome (BAC) transgenic mice (SNCA-OVX) overexpressing wild-type human α -Syn exhibit age-dependent DA neuron loss in the SNpc, reduced terminal DA release in the striatum, and decreased SNpc DA neuron firing [43,44]. Lentivirus and AAV vectors have been utilized to introduce external α -Syn in rats, mice, and primates, showing similar α -Syn pathology and clear DA neurodegeneration. AAV-mediated introduction of the A53T α -Syn mutation leads to progressive, age-dependent DA neuron loss, motor function impairment, dopaminergic degeneration, and α -Syn positive inclusions, although variability in AAV models indicates a need for further refinement to assess neuroprotective approaches [45,46]. Interest is growing in models based on cell-to-cell α -Syn transmission, demonstrated by intrastratal injections of α -Syn fibrils or purified α -Syn from PD brains into wild-type mice, leading to DA neuron degeneration in the SNpc, reduced striatal DA levels, and motor deficits. Similarly, intramuscular injections in transgenic mice can induce PD-like pathology. Current reviews suggest that preformed fibril models of α -Syn are valuable for studying its prion-like behavior and propagation, while viral overexpression models help in understanding α -Syn-induced toxicity pathways but not its prion-like properties. However, the challenge in replicating comparable phenotypes across α -Syn models highlights the complexity of accurately modeling PD, underscoring the need for a deep understanding of these models to address scientific questions related to Parkinson's disease [47-49].

Leucine-Rich Repeat Kinase-2 (LRRK2)

Mutations in LRRK2 are known to cause a late-onset, autosomal dominant form of PD. The most common mutations in LRRK2 are G2019S, found in the kinase domain, and R1441C, located in the guanosine triphosphatase domain. Mouse models overexpressing LRRK2 have shown either mild or no disruption in the DA neurons of the SNpc. Specifically, overexpression of the G2019S LRRK2 mutation leads to progressive and selective neurodegeneration of DA neurons in the SNpc, though no changes in DA levels in the striatum or in locomotor activity were observed in adult mice with this mutation [50,51]. Conditional overexpression of the R1441C LRRK2 mutation results in nuclear abnormalities without causing neurodegeneration. BAC transgenic mouse models of LRRK2 have shown an age-dependent progressive motor deficit and mildly reduced striatal DA release. In these models, neurogenesis was impaired in adult mice, but no neurodegeneration was observed at 9-10 months of age. LRRK2 knockout (KO) mice did not show neurodegeneration or altered neuronal structure, but they did exhibit aggregation of α -Synuclein in the brain [52,53]. Overexpression of G2019S LRRK2 induced through a herpes simplex virus amplicon led to DA neurotoxicity, with a 50% loss of neurons and reduced DA fiber density following injection. Similarly, unilateral injection of a human serotype 5 adenoviral vector expressing G2019S LRRK2, driven by a neuronal-specific human synapsin-1 promoter, caused progressive DA neuronal loss in the ipsilateral SNpc [54,55].

LRRK2 models of PD have provided valuable insights into the mechanisms of LRRK2-mediated neurodegeneration, including the regulation of protein translation, autophagy, and vesicle trafficking. However, these models have limitations, such as not exhibiting all features of Parkinson's disease, lacking alpha-synuclein pathology associated with Lewy bodies seen in human LRRK2 mutations, and the need for validation of mechanisms identified in LRRK2 models in human PD [56,57]. Additionally, rodents seem to exhibit resistance to LRRK2 toxicity, suggesting there might be additional mechanisms protecting against DA neuronal loss. These aspects of LRRK2 animal models should be carefully considered in Parkinson's disease research [58].

Pten-Induced Kinase 1 (PINK1)

Mice lacking PINK1 showed a decrease in DA levels in the striatum as they aged, accompanied by reduced motor activity, yet no significant changes were observed in the striatal DA levels and DA neurons. Up to 18 months of age, these mice did not exhibit Lewy body formation or neurodegeneration. However, when α -Syn was overexpressed in PINK1-deficient mice, it led to dopamine neuron degeneration and an increase in α -Syn phosphorylation at serine 129 within four weeks of the injection [59,60]. A gradual reduction in striatal DA was observed in PINK1 mutant mice with deletions in exons 4-5, but there was no degeneration in the SNpc. The pathogenesis of PD also involves PINK1/Parkin-mediated mitophagy, calcium signaling, and contacts between the endoplasmic reticulum and mitochondria. Nonetheless, the view of heterozygous mutations in PINK1 as a significant risk factor for Parkinson's Disease has been reconsidered [61,62].

8. PARKIN

Alterations in the PARKIN gene lead to early-onset PD, responsible for about 50% of PD cases in individuals under 30 years old. These genetic changes result in defective mitophagy, protein accumulation, and mitochondrial dysfunction. Additionally, the PARKIN gene is crucial for the ubiquitin-proteasome system (UPS). Creating PARKIN KO mice by deleting exon 3, exon 7, or exon 2 in the PRKN gene has led to the absence of DA-related abnormalities in these animals [63,64]. However, some KO mice have shown reduced DA release and lower norepinephrine levels, alongside abnormalities in the nigrostriatal region, but without loss of neurons in the SNpc. The PARKIN-Q311X-DAT-BAC mice exhibit progressive motor impairments, degeneration of DA neurons in the SNpc, decreased levels of striatal DA, and reduced striatal dopaminergic terminals. Furthermore, prolonged overexpression of both wild-type human parkin and the T240R-parkin variant in rats triggers dose-dependent neurodegeneration [65,66].

DJ-1 (PARK7)

Mutations in the DJ-1 gene have been linked to autosomal recessive PD. Researchers created DJ-1 KO mice either by deleting exon 2 or by inserting a premature stop codon in exon 1. These mice exhibited reduced DA levels in the striatum and impaired motor function, yet they did not show DA neuron loss in the SNpc. Another strain of DJ-1 KO mice demonstrated DA neuron loss in the ventral tegmental area (VTA) [67,68]. Backcrossing DJ-1 KO mice onto a C-57/BL6 genetic background resulted in DA neuron loss in the SNpc and progressive deterioration of the nigrostriatal pathway. These mice also exhibited age-related motor deficits and progressive bilateral degeneration. PARK7 is crucial for antioxidative defense, safeguarding cells against oxidative stress. DJ-1 KO rats may serve as a valuable model for investigating the early stages of PD. However, further studies are necessary to validate the effectiveness of this animal model for PD research [69,70].

Neurotoxin-induced PD animal models

Research has shown that exposure to certain pharmaceuticals contaminated with the chemical 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) can lead to a range of neurodegenerative symptoms in humans, ultimately resulting in PD.

MPTP serves as a neurotoxin, specifically harming dopamine-producing neurons and causing a condition similar to PD. This has made the PD model, induced by such neurotoxins, a focal point for scientific investigation [71,72]. Furthermore, agricultural chemicals, particularly pesticides, have been identified as significant risk factors for PD among those working in farming due to their frequent exposure. Historical research has demonstrated that neurotoxins like 6-hydroxydopamine (6-OHDA), rotenone, and paraquat (PQ) are effective in creating PD animal models. These models are widely used in scientific studies because they are cost-effective, methodologically mature, and replicate the disease's characteristics accurately [73,74].

MPTP-induced PD animal model

MPTP, a chemical compound with pain-relieving properties, is safe, dissolves in fats, and easily crosses the blood-brain barrier (BBB). Once inside the brain, it specifically affects astrocytes. The enzyme monoamine oxidase B, found in the outer membrane of mitochondria, transforms MPTP into an intermediate, the 1-methyl-4-phenyl-2,3-dihydropyridinium ion. This intermediate then oxidizes into the 1-methyl-4-phenylpyridinium ion (MPP⁺), a neurotoxin structurally similar to dopamine [75,76]. This similarity allows MPP⁺ to be recognized and transported to DA neurons by the dopamine transporter. Inside neurons, MPP⁺ blocks the function of the mitochondrial complex enzyme I, leading to a drastic reduction in adenosine triphosphate levels and an increase in ROS production. The resulting oxidative stress causes the destruction and loss of DA neurons, leading to PD. MPTP's specific impact on mitochondrial function makes it an important tool for studying mitochondrial dysfunction in PD [77].

The MPTP model is the most widely used in PD research today. It not only mimics the behavioral symptoms of PD but also accurately represents the gradual loss of DA neurons in the SNpc and central nervous system (CS). The model takes advantage of MPTP's ability to cross the BBB easily, using various methods of administration including intraperitoneal, subcutaneous, intramuscular injections, and intravenous infusions. By adjusting the intensity and frequency of these injections, researchers can create different PD mouse models [78,79]. A single, low-dose injection of MPTP can create a model that precedes PD, while multiple injections within 24 hours can lead to acute PD models. Models that represent subacute and chronic stages of PD are developed through daily injections of MPTP, either continuously or intermittently, for days to weeks. Acute models, however, tend to have a brief disease progression with a high mortality rate and rapid onset, and animals might recover quickly, not truly reflecting the persistent progression seen in human PD [80]. In contrast, subacute models show longer neurological damage and a more extended pathogenic phase. Chronic models, created with low-dose MPTP over time, show a steady decrease in DA neurons and behaviors indicative of PD, such as reduced activity, slow movement, and the presence of α -synuclein aggregates. Non-motor symptoms have also been observed, with some mouse and rat models showing olfactory deficits through intranasal MPTP administration, and non-human primate models exhibiting signs of apathy and depression [81,82]. Recent research indicates that low-dose, long-term MPTP exposure produces models that more closely resemble the symptoms of human PD [83].

Rodents are favored in research for their cost-effectiveness and established handling and care protocols. However, rats have a relatively resistant immune system to MPTP, leading to a less evident PD phenotype that develops quickly. Mice, therefore, have become the preferred choice for PD research, with the C57BL/6 strain being particularly susceptible to MPTP and widely used in studying the disease's pathogenic mechanisms and in developing diagnostic and therapeutic approaches [84,85].

6-OHDA-induced PD animal model

6-OHDA is a neurotoxin that closely resembles DA in its chemical structure and specifically targets and destroys DA neurons in the SNpc. When it enters the brain, 6-OHDA attaches to the DA transporter, which helps it enter the mitochondria of DA neurons. This leads to a decrease in the production of mitochondrial complex enzyme I. Inside the neuron, 6-OHDA boosts the generation of ROS and blocks the creation of antioxidant enzymes through its autoxidation and metabolic activities [86,87]. The failure of antioxidant enzymes to counteract ROS in DA neurons results in the oxidation of lipids, proteins, and DNA, causing oxidative stress and mitochondrial damage. Furthermore, 6-OHDA lowers the mitochondrial membrane potential by inhibiting mitochondrial complex enzyme IV, disrupting the mitochondrial respiratory chain and causing mitochondrial dysfunction. This depletion of intracellular adenosine triphosphate ultimately causes the degeneration and death of DA neurons [88,89].

6-OHDA specifically harms DA neurons in the SNpc. Since it cannot easily cross the BBB, it is delivered directly into the brain through stereotactic injection. PD models that feature either unilateral or bilateral lesions are usually created with single or double injections, targeting primarily the SNpc, CS, and medial forebrain bundle (MFB). Rodent models show both motor and non-motor impairments, varying with the method of administration [90,91]. The unilateral injection method is most commonly used to establish the 6-OHDA model, causing movement disorders on the side of the body opposite to the injection site. This method is preferred for studying the effects of clinical interventions due to its minimal unrelated side effects and high survival rate. Bilateral injections, however, lead to severe eating and drinking disorders and a higher mortality rate, making unilateral injections more favorable. In rodent models induced with 6-OHDA, increased depressive behavior was observed in forced swimming tests, along with gastrointestinal dysfunction evidenced by delayed gastric

emptying and impaired olfactory function [92,93]. Injecting 6-OHDA into the SNpc or MFB of mice results in a 90% loss of DA neurons within 12 hours, causing death from eating and drinking disorders without proper care. Direct injections into the CS result in a sustained loss of DA neurons in the SNpc. Compared to injections directly into the SNpc and MFB, injections at the CS site led to a slower and milder disease process, more closely mirroring the gradual onset and progression of human PD [94,95].

The 6-OHDA model offers a significant advantage by causing neurodegeneration in one hemisphere of the brain in test animals. This results in PD-like behavioral symptoms on the side of the body opposite to the affected brain hemisphere, allowing for a more precise assessment of movement disorders and the impact of potential treatments [96-98]. Nonetheless, the model has its drawbacks. The main motor dysfunction it replicates is lateral rotation, which does not fully represent the diverse and complex symptoms seen in human PD. Furthermore, the model typically shows a rapid onset and brief course of symptoms, which is in stark contrast to the slow and progressive nature of PD in humans. Another limitation is its failure to produce Lewy bodies (LB), a crucial pathological hallmark of PD [99,100].

Rats are commonly used as the experimental subjects in the 6-OHDA PD model, although mice, cats, dogs, and monkeys also show significant responses to 6-OHDA. The choice of experimental animals should be guided by the specific aims of the research and the practicalities involved [101,102].

Rotenone-induced PD animal model

Rotenone is a lipid-soluble organic pesticide found in the root bark of certain plants. It can cross the BBB efficiently, making it suitable for delivery through intravenous, intraperitoneal, subcutaneous injections, or orally to create chronic PD models. Once in the brain, rotenone blocks mitochondrial complex enzyme I, lowers glutathione levels, leads to the production of significant amounts of ROS, disrupts DA metabolism, causes oxidative stress in the SNpc, and damages mitochondrial function. This results in the degeneration and death of DA neurons and cells, ultimately causing PD symptoms to appear [103,104]. The absorption rate of rotenone can vary among different animals and body parts, necessitating precise dosing for long-term use in animal studies. A stable chronic model typically emerges after 30 days of continuous treatment. Research indicates that rats with chronic exposure to rotenone display motor symptoms akin to those seen in human PD, including slow movement, stiffness, and limb tremors. Rats receiving subcutaneous rotenone injections for over 30 days show decreased motor activity and lethargy, and exhibit depressive behaviors in forced swimming and sucrose preference tests, as well as gastrointestinal (GI) dysfunction. Moreover, these models show SNpc DA neuron degeneration and the formation of LB aggregates or α -synuclein in the cytoplasm of remaining neurons [105,106].

However, rotenone's high toxicity and unstable chemical nature pose challenges for its continuous use in animal studies, as prolonged and frequent doses increase mortality rates among experimental subjects. Therefore, although this model might not perfectly mimic the long-term progression of human PD, it does replicate symptoms similar to the disease's early stages, thereby aiding in the study of the peripheral nervous system's pathology at the onset of PD. The rotenone-induced PD model is primarily used in rats but can also be applied to mice, fruit flies, and zebrafish [107,108].

PQ-induced PD animal model

PQ is a lipid-soluble organic herbicide with a structure similar to MPP⁺ and toxicity levels akin to MPTP. Unlike MPTP, PQ struggles to cross the BBB and is primarily utilized to create PD models in animals through various administration methods including intracerebral, intraperitoneal, subcutaneous injections, as well as oral and nasal routes. PQ targets the SNpc, selectively damaging DA neurons and inducing PD-like symptoms. The exact process by which PQ causes neurotoxicity is not fully understood. PQ is highly toxic to humans, causing significant organ damage [109,110]. It is thought to cause mitochondrial dysfunction and interfere with the redox reactions of glutathione and related proteins, reducing the cell's antioxidant capabilities. Long-term exposure to PQ has been shown to gradually reduce DA neurons, reflecting the characteristic decrease in activity seen in PD. This method of modeling effectively replicates the DA neuron degeneration seen with prolonged exposure to environmental toxins, aiding in the study of chronic PD symptoms in a preclinical setting. Research on rodent models has indicated that PQ can also induce non-motor symptoms such as depression and anxiety [111-113]. However, this method requires a longer experimental period and the onset of PQ toxicity is slow. Unlike acute PD models that use high doses over a short period, leading to rapid symptom onset but failing to accurately mimic environmentally induced human PD, PQ models are beneficial for studying α -synuclein production and Lewy body formation in SNpc DA neurons. Mice and rats are commonly used to establish these PD animal models with PQ [114,115].

Drug-induced parkinsonism

Drug-induced parkinsonism (DIP) represents the predominant type of secondary parkinsonism, exhibiting symptoms in patients that closely mimic those associated with PD. Common manifestations of DIP encompass a diminished sense of smell, challenges in initiating and regulating movement, reduced or impaired movement, and tremors at rest. DIP ranks as the second leading cause of parkinsonism, following idiopathic PD. In the subsequent sections, an overview of current

drug-induced models that mimic various motor deficits observed in animals will be provided. Yet this still won't capture most of the neuropathological features characteristic of PD [116].

Reserpine

In 1957, Carlsson and his team pioneered one of the initial animal models for PD through the administration of reserpine. This compound acts as an inhibitor of the vesicular monoamine transporter (VMAT) type 2, leading to a depletion of monoamines in nerve terminals by hindering their storage and release in vesicles. The resulting decrease in monoamines causes reduced movement and muscle stiffness. Initially, reserpine was employed as an antihypertensive medication due to its ability to lower cellular monoamine levels, but its use clinically led to side effects in patients such as lethargy, depression, and motor dyskinesia [117,118]. In rodent studies, reserpine has been shown to cause motor impairments as well as deficits in memory, cognition, and emotional well-being. The injection of reserpine in these animals induces symptoms akin to the pathogenesis of PD, including akinesia and rigidity, which are characteristic of the disease. Moreover, Carlsson's work demonstrated that the effects of reserpine could be partially reversed by Levodopa (L-DOPA). In rats, reserpine treatment results in sex-specific differences in motor abilities, mirroring those seen in PD. Within a few weeks, there is observable loss of DA neurons in the SNpc and their fibers in the dorsal striatum, although this effect is temporary [119,120]. Notably, female rats do not show significant loss of DA axonal innervation in the dorsal striatum, which may account for the observed differences in motor impairment. Reserpine has been found to induce PD symptoms in humans and parkinsonian-like symptoms in rodents. Its dosage and administration can be easily adjusted, facilitating various levels of PD symptomatology research. However, the reserpine model is less favored for studying late-stage PD pathology markers, such as Lewy body-like inclusions and permanent DA neuron loss [121]. While reserpine treatment in rodents has been linked to oxidative stress in the striatum, there's no evidence of mitochondrial or lysosomal dysfunction or inflammation. Beyond memory impairments, reserpine also induces non-motor symptoms relevant to PD's preclinical phase, including sleep disturbances, anxiety, depressive-like behavior, and gastrointestinal issues. Thus, reserpine serves as a useful model for exploring the progression and neurochemical aspects of PD [122].

Haloperidol

Haloperidol, a conventional antipsychotic medication, acts by attaching to D2 dopamine receptors on postsynaptic neurons. This action inhibits dopamine transmission in the striatum, leading to altered activity in the basal ganglia circuits, which can cause muscle stiffness and catalepsy. When administered acutely, haloperidol decreases the levels of dopamine, noradrenaline, and serotonin in the striatum [123]. Long-term use in mice has been shown to lead to a deficiency in mitochondrial complex I (MCI) in several brain regions, including the frontal cortex, hippocampus, striatum, and midbrain. Researchers utilize the haloperidol model to study muscle stiffness, dyskinesia, or catalepsy and to explore new treatments for Parkinson's disease in both rodents and non-human primates [124]. Chronic haloperidol treatment in rodents also significantly elevates the levels of pro-inflammatory cytokines TNF- α and IL-1 β in the cortex and striatum when compared to untreated animals. Nevertheless, haloperidol has not been associated with degeneration of dopamine neurons in the midbrain, suggesting it may not be the best option for researching new neuroprotective or neurorepair methods for Parkinson's disease [125].

9. CONCLUSION

Animal models remain fundamental to advancing our understanding of Parkinson's disease, offering valuable tools to explore the molecular, cellular, and behavioral consequences of dopaminergic neurodegeneration. Each model—ranging from invertebrates like *C. elegans* and *Drosophila* to vertebrates such as rodents, zebrafish, and non-human primates—contributes distinct insights into PD pathogenesis. Genetic models replicate familial PD mutations and reveal pathways related to mitochondrial dysfunction, protein aggregation, and impaired autophagy. In contrast, neurotoxin-based models provide rapid and reproducible systems that mimic dopaminergic neuron loss and motor deficits characteristic of idiopathic PD. Non-human primate models, while limited by ethical and logistical constraints, most closely reflect the neuropathological and behavioral spectrum observed in humans.

However, no single model fully reproduces the complex, multifactorial nature of PD. The integration of genetic susceptibility, environmental exposures, and aging-related factors represents the next frontier in model refinement. Advances in gene editing, viral vector technology, and multi-omics approaches promise to enhance model precision and translatability. Ultimately, the judicious use of complementary models—each tailored to specific research questions—will remain indispensable for elucidating disease mechanisms and identifying effective neuroprotective and restorative treatments for Parkinson's disease. Bridging these preclinical findings with human data will be essential for translating basic research into meaningful clinical advances..

REFERENCES

[1] Kouli A, Torsney KM, Kuan WL. Parkinson's Disease: Etiology, Neuropathology, and Pathogenesis. In: Stoker TB, Greenland JC, editors. Parkinson's Disease: Pathogenesis and Clinical Aspects [Internet].

Brisbane (AU): Codon Publications; 2018 Dec 21. Chapter 1. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK536722/>; doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch1

[2] Sun, Ym., Wang, Zy., Liang, Yy. et al. Digital biomarkers for precision diagnosis and monitoring in Parkinson's disease. *npj Digit. Med.* 7, 218 (2024). <https://doi.org/10.1038/s41746-024-01217-2>

[3] Planas-Ballvé A, Rios J, Isprierto L, Gea M, Grau L, Jiménez M, Cáceres C, Martínez S, Beyer K, Álvarez R, Pastor P, Vilas D. Key motor and non-motor features in early dementia with Lewy bodies. *Front Neurol.* 2025 Mar 13;16:1555175. doi: 10.3389/fneur.2025.1555175. PMID: 40183012; PMCID: PMC11966395.

[4] Peña-Zelayeta L, Delgado-Minjares KM, Villegas-Rojas MM, León-Arcia K, Santiago-Balmaseda A, Andrade-Guerrero J, Pérez-Segura I, Ortega-Robles E, Soto-Rojas LO, Arias-Carrión O. Redefining Non-Motor Symptoms in Parkinson's Disease. *J Pers Med.* 2025 Apr 26;15(5):172. doi: 10.3390/jpm15050172. PMID: 40423044; PMCID: PMC12112995.

[5] Radad K, Moldzio R, Krewenka C, Kranner B, Rausch WD. Pathophysiology of non-motor signs in Parkinson's disease: some recent updating with brief presentation. *Explor Neuroprot Ther.* 2023;3:24–46. <https://doi.org/10.37349/ent.2023.00036>

[6] Khan E, Hasan I, Haque ME. Parkinson's Disease: Exploring Different Animal Model Systems. *Int J Mol Sci.* 2023 May 22;24(10):9088. doi: 10.3390/ijms24109088. PMID: 37240432; PMCID: PMC10219045.

[7] Dovonou, A., Bolduc, C., Soto Linan, V. et al. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. *Transl Neurodegener* 12, 36 (2023). <https://doi.org/10.1186/s40035-023-00368-8>

[8] Potashkin JA, Blume SR, Runkle NK. Limitations of animal models of Parkinson's disease. *Parkinsons Dis.* 2010 Dec 20;2011:658083. doi: 10.4061/2011/658083. PMID: 21209719; PMCID: PMC3010694.

[9] Soufizadeh P, Mansouri V, Ahmadbeigi N. A review of animal models utilized in preclinical studies of approved gene therapy products: trends and insights. *Lab Anim Res.* 2024 Apr 22;40(1):17. doi: 10.1186/s42826-024-00195-6. PMID: 38649954; PMCID: PMC11034049.

[10] Hickman DL, Johnson J, Vemulapalli TH, Crisler JR, Shepherd R. Commonly Used Animal Models. *Principles of Animal Research for Graduate and Undergraduate Students.* 2017:117–75. doi: 10.1016/B978-0-12-802151-4.00007-4. Epub 2016 Nov 25. PMCID: PMC7150119.

[11] Bryda EC. The Mighty Mouse: the impact of rodents on advances in biomedical research. *Mo Med.* 2013 May-Jun;110(3):207-11. PMID: 23829104; PMCID: PMC3987984.

[12] Sheta R, Bérard M, Musiol D, Martínez-Drudis L, Oueslati A. Behavioral analysis of motor and non-motor impairment in rodent models of Parkinson's disease. *Front Aging Neurosci.* 2024 Dec 23;16:1464706. doi: 10.3389/fnagi.2024.1464706. PMID: 39763579; PMCID: PMC11701160.

[13] Zambetta ML, Fernandes EB, Kim A, Russo TL, Gianlorenço AC. Preclinical Parkinson's Disease Models for Non-Motor Symptoms: Research Recommendations from a Systematic Review. *Life (Basel).* 2025 Jun 28;15(7):1034. doi: 10.3390/life15071034. PMID: 40724536; PMCID: PMC12299557.

[14] He S, Ru Q, Chen L, Xu G, Wu Y. Advances in animal models of Parkinson's disease. *Brain Res Bull.* 2024 Sep;215:111024. doi: 10.1016/j.brainresbull.2024.111024. Epub 2024 Jul 4. PMID: 38969066.

[15] Zong, Y., Li, H., Liao, P. et al. Mitochondrial dysfunction: mechanisms and advances in therapy. *Sig Transduct Target Ther* 9, 124 (2024). <https://doi.org/10.1038/s41392-024-01839-8>

[16] Henrich, M.T., Oertel, W.H., Surmeier, D.J. et al. Mitochondrial dysfunction in Parkinson's disease – a key disease hallmark with therapeutic potential. *Mol Neurodegeneration* 18, 83 (2023). <https://doi.org/10.1186/s13024-023-00676-7>

[17] Schmidt JK, Jones KM, Van Vleck T, Emborg ME. Modeling genetic diseases in nonhuman primates through embryonic and germline modification: Considerations and challenges. *Sci Transl Med.* 2022 Mar 2;14(634):eabf4879. doi: 10.1126/scitranslmed.abf4879. Epub 2022 Mar 2. PMID: 35235338; PMCID: PMC9373237.

[18] National Academies of Sciences, Engineering, and Medicine; Division on Earth and Life Studies; Health and Medicine Division; Institute for Laboratory Animal Research; Board on Health Sciences Policy; Committee on the State of the Science and Future Needs for Nonhuman Primate Model Systems; Yost OC, Downey A, Ramos KS, editors. *Nonhuman Primate Models in Biomedical Research: State of the Science and Future Needs.* Washington (DC): National Academies Press (US); 2023 May 4. 2, Contribution of Nonhuman Primate Models to Advances in Human Health. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK592996/>

[19] Fomenko A, Fasano A, Kalia SK. Another Step Forward for Freezing of Gait in Parkinson's Disease. *J Parkinsons Dis.* 2024;14(2):353-355. doi: 10.3233/JPD-230412. PMID: 38251064; PMCID: PMC10977400.

[20] Álvarez-Luquín, D.D., González-Fernández, R.R., Torres-Velasco, M.E. et al. Neurodegeneration models in Parkinson's disease: cellular and molecular paths to neuron death. *Behav Brain Funct* 21, 14 (2025). <https://doi.org/10.1186/s12993-025-00279-w>

[21] Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies. *Mov Disord.* 2013 Jan;28(1):61-70. doi: 10.1002/mds.25108. Epub 2012 Jul 2. PMID: 22753348; PMCID: PMC3517687.

[22] Chia SJ, Tan EK, Chao YX. Historical Perspective: Models of Parkinson's Disease. *Int J Mol Sci.* 2020 Apr 2;21(7):2464. doi: 10.3390/ijms21072464. PMID: 32252301; PMCID: PMC7177377.

[23] Zhang T, Zhang N, Feng R, Wang H, Bi F, Wang S. Promoting the welfare of animals utilized in neuroscience research. *Brain-X.* 2024; 2:e70002. <https://doi.org/10.1002/brx2.70002>

[24] Bezard E, Anderson RM, Badin RA, Bergman H, Boehringer A, Borgognon S, Emborg ME, Kordower JH, Li JY, Martel AC, Metzger JM, Smith Y, Takada M, Takahashi J, Takahashi R, Dehay B. Position paper: leveraging non-human primate (NHP) specificities to accelerate Parkinson's disease and ageing research. *NPJ Parkinsons Dis.* 2025 Aug 2;11(1):227. doi: 10.1038/s41531-025-01088-8. PMID: 40753086; PMCID: PMC12317990.

[25] Ceccarelli F, Londei F, Arena G, Genovesio A, Ferrucci L. Home-Cage Training for Non-Human Primates: An Opportunity to Reduce Stress and Study Natural Behavior in Neurophysiology Experiments. *Animals (Basel).* 2025 May 6;15(9):1340. doi: 10.3390/ani15091340. PMID: 40362154; PMCID: PMC12071079.

[26] Kimble J, Nüsslein-Volhard C. The great small organisms of developmental genetics: *Caenorhabditis elegans* and *Drosophila melanogaster*. *Dev Biol.* 2022 May;485:93-122. doi: 10.1016/j.ydbio.2022.02.013. Epub 2022 Mar 2. PMID: 35247454; PMCID: PMC9092520.

[27] Victor Atoki A, Aja PM, Shinkafi TS, Ondari EN, Adeniyi AI, Fasogbon IV, Dangana RS, Shehu UU, Akin-Adewumi A. Exploring the versatility of *Drosophila melanogaster* as a model organism in biomedical research: a comprehensive review. *Fly (Austin).* 2025 Dec;19(1):2420453. doi: 10.1080/19336934.2024.2420453. Epub 2024 Dec 25. PMID: 39722550; PMCID: PMC11702942.

[28] Dimitriadi M, Hart AC. Neurodegenerative disorders: insights from the nematode *Caenorhabditis elegans*. *Neurobiol Dis.* 2010 Oct;40(1):4-11. doi: 10.1016/j.nbd.2010.05.012. Epub 2010 May 19. PMID: 20493260; PMCID: PMC2926245.

[29] Xu R, Kang Q, Yang X, Yi P, Zhang R. Unraveling Molecular Targets for Neurodegenerative Diseases Through *Caenorhabditis elegans* Models. *Int J Mol Sci.* 2025 Mar 26;26(7):3030. doi: 10.3390/ijms26073030. PMID: 40243699; PMCID: PMC11988803.

[30] Muñoz-Soriano V, Paricio N. *Drosophila* models of Parkinson's disease: discovering relevant pathways and novel therapeutic strategies. *Parkinsons Dis.* 2011 Mar 3;2011:520640. doi: 10.4061/2011/520640. PMID: 21512585; PMCID: PMC3075815.

[31] Nagoshi E. *Drosophila* Models of Sporadic Parkinson's Disease. *Int J Mol Sci.* 2018 Oct 26;19(11):3343. doi: 10.3390/ijms19113343. PMID: 30373150; PMCID: PMC6275057.

[32] Vaz RL, Outeiro TF, Ferreira JJ. Zebrafish as an Animal Model for Drug Discovery in Parkinson's Disease and Other Movement Disorders: A Systematic Review. *Front Neurol.* 2018 Jun 1;9:347. doi: 10.3389/fneur.2018.00347. PMID: 29910763; PMCID: PMC5992294.

[33] Doyle JM, Croll RP. A Critical Review of Zebrafish Models of Parkinson's Disease. *Front Pharmacol.* 2022 Mar 15;13:835827. doi: 10.3389/fphar.2022.835827. PMID: 35370740; PMCID: PMC8965100.

[34] Day JO, Mullin S. The Genetics of Parkinson's Disease and Implications for Clinical Practice. *Genes (Basel).* 2021 Jun 30;12(7):1006. doi: 10.3390/genes12071006. PMID: 34208795; PMCID: PMC8304082.

[35] Cheon SM, Chan L, Chan DK, Kim JW. Genetics of Parkinson's disease - a clinical perspective. *J Mov Disord.* 2012 Oct;5(2):33-41. doi: 10.14802/jmd.12009. Epub 2012 Oct 30. PMID: 24868412; PMCID: PMC4027661.

[36] Blesa J, Przedborski S. Parkinson's disease: animal models and dopaminergic cell vulnerability. *Front Neuroanat.* 2014 Dec 15;8:155. doi: 10.3389/fnana.2014.00155. PMID: 25565980; PMCID: PMC4266040.

[37] Ye H, Robak LA, Yu M, Cykowski M, Shulman JM. Genetics and Pathogenesis of Parkinson's Syndrome. *Annu Rev Pathol.* 2023 Jan 24;18:95-121. doi: 10.1146/annurev-pathmechdis-031521-034145. Epub 2022 Sep 13. PMID: 36100231; PMCID: PMC10290758.

[38] Sturchio A, Rocha EM, Kauffman MA, Marsili L, Mahajan A, Saraf AA, Vizcarra JA, Guo Z, Espay AJ.

Recalibrating the Why and Whom of Animal Models in Parkinson Disease: A Clinician's Perspective. *Brain Sci.* 2024 Jan 31;14(2):151. doi: 10.3390/brainsci14020151. PMID: 38391726; PMCID: PMC10887152.

[39] Yoo G, An HJ, Yeou S, Lee NK. α -Synuclein Disrupts Vesicle Fusion by Two Mutant-Specific Mechanisms. *Mol Cells.* 2022 Nov 30;45(11):806-819. doi: 10.14348/molcells.2022.0102. Epub 2022 Nov 11. PMID: 36380732; PMCID: PMC9676983.

[40] Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α -Synuclein: Role in Parkinson's Disease. *Front Cell Dev Biol.* 2021 May 28;9:673395. doi: 10.3389/fcell.2021.673395. PMID: 34124057; PMCID: PMC8194081.

[41] Keomanivong C, Schamp J, Tabakovic E, Thangavel R, Aldridge G, Pieper AA, Narayanan NS. Mice Expressing A53T/A30P Mutant Alpha-Synuclein in Dopamine Neurons Do Not Display Behavioral Deficits. *eNeuro.* 2024 Feb 13;11(2):ENEURO.0170-23.2023. doi: 10.1523/ENEURO.0170-23.2023. PMID: 38351057; PMCID: PMC10866330.

[42] Taylor TN, Potgieter D, Anwar S, Senior SL, Janezic S, Threlfell S, Ryan B, Parkkinen L, Deltheil T, Cioroch M, Livieratos A, Oliver PL, Jennings KA, Davies KE, Ansorge O, Bannerman DM, Cragg SJ, Wade-Martins R. Region-specific deficits in dopamine, but not norepinephrine, signaling in a novel A30P α -synuclein BAC transgenic mouse. *Neurobiol Dis.* 2014 Feb;62:193-207. doi: 10.1016/j.nbd.2013.10.005. Epub 2013 Oct 10. PMID: 24121116; PMCID: PMC3898275.

[43] Chen L, Xie Z, Turkson S, Zhuang X. A53T human α -synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. *J Neurosci.* 2015 Jan 21;35(3):890-905. doi: 10.1523/JNEUROSCI.0089-14.2015. PMID: 25609609; PMCID: PMC4300331.

[44] Ip, C.W., Klaus, LC., Karikari, A.A. et al. AAV1/2-induced overexpression of A53T- α -synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease. *acta neuropathol commun* 5, 11 (2017). <https://doi.org/10.1186/s40478-017-0416-x>

[45] Liu S, Yang N, Yan Y, Wang S, Chen J, Wang Y, Gan X, Zhou J, Xie G, Wang H, Huang T, Ji W, Wang Z, Si W. An accelerated Parkinson's disease monkey model using AAV- α -synuclein plus poly(ADP-ribose). *Cell Rep Methods.* 2024 Oct 21;4(10):100876. doi: 10.1016/j.crmeth.2024.100876. Epub 2024 Oct 15. PMID: 39413778; PMCID: PMC11573744.

[46] Gómez-Benito M, Granado N, García-Sanz P, Michel A, Dumoulin M, Moratalla R. Modeling Parkinson's Disease With the Alpha-Synuclein Protein. *Front Pharmacol.* 2020 Apr 23;11:356. doi: 10.3389/fphar.2020.00356. PMID: 32390826; PMCID: PMC7191035.

[47] Paumier KL, Luk KC, Manfredsson FP, Kanaan NM, Lipton JW, Collier TJ, Steece-Collier K, Kemp CJ, Celano S, Schulz E, Sandoval IM, Fleming S, Dirr E, Polinski NK, Trojanowski JQ, Lee VM, Sortwell CE. Intrastriatal injection of pre-formed mouse α -synuclein fibrils into rats triggers α -synuclein pathology and bilateral nigrostriatal degeneration. *Neurobiol Dis.* 2015 Oct;82:185-199. doi: 10.1016/j.nbd.2015.06.003. Epub 2015 Jun 17. PMID: 26093169; PMCID: PMC4640952.

[48] Earls RH, Menees KB, Chung J, Barber J, Gutekunst CA, Hazim MG, Lee JK. Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. *J Neuroinflammation.* 2019 Dec 3;16(1):250. doi: 10.1186/s12974-019-1636-8. PMID: 31796095; PMCID: PMC6889316.

[49] Prymaczok, N.C., De Francesco, P.N., Mazzetti, S. et al. Cell-to-cell transmitted alpha-synuclein recapitulates experimental Parkinson's disease. *npj Parkinsons Dis.* 10, 10 (2024). <https://doi.org/10.1038/s41531-023-00618-6>

[50] Nikanova EV, Xiong Y, Tanis KQ, Dawson VL, Vogel RL, Finney EM, Stone DJ, Reynolds IJ, Kern JT, Dawson TM. Transcriptional responses to loss or gain of function of the leucine-rich repeat kinase 2 (LRRK2) gene uncover biological processes modulated by LRRK2 activity. *Hum Mol Genet.* 2012 Jan 1;21(1):163-74. doi: 10.1093/hmg/ddr451. Epub 2011 Oct 4. PMID: 21972245; PMCID: PMC3235012.

[51] Chen, M.L., Wu, R.M. LRRK 2 gene mutations in the pathophysiology of the ROCO domain and therapeutic targets for Parkinson's disease: a review. *J Biomed Sci* 25, 52 (2018). <https://doi.org/10.1186/s12929-018-0454-0>

[52] Chang, E.E.S., Ho, P.W.L., Liu, H.F. et al. LRRK2 mutant knock-in mouse models: therapeutic relevance in Parkinson's disease. *Transl Neurodegener* 11, 10 (2022). <https://doi.org/10.1186/s40035-022-00285-2>

[53] Seegobin SP, Heaton GR, Liang D, Choi I, Blanca Ramirez M, Tang B, Yue Z. Progress in LRRK2-Associated Parkinson's Disease Animal Models. *Front Neurosci.* 2020 Jul 15;14:674. doi: 10.3389/fnins.2020.00674. PMID: 32765209; PMCID: PMC7381130.

[54] Nguyen APT, Tsika E, Kelly K, Levine N, Chen X, West AB, Boularand S, Barneoud P, Moore DJ. Dopaminergic neurodegeneration induced by Parkinson's disease-linked G2019S LRRK2 is dependent on kinase and GTPase activity. *Proc Natl Acad Sci U S A.* 2020 Jul 21;117(29):17296-17307. doi: 10.1073/pnas.1922184117. Epub 2020 Jul 6. PMID: 32631998; PMCID: PMC7382283.

[55] Karuppagounder SS, Xiong Y, Lee Y, Lawless MC, Kim D, Nordquist E, Martin I, Ge P, Brahmachari S, Jhaldiyal A, Kumar M, Andrabi SA, Dawson TM, Dawson VL. LRRK2 G2019S transgenic mice display increased susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-mediated neurotoxicity. *J Chem Neuroanat.* 2016 Oct;76(Pt B):90-97. doi: 10.1016/j.jchemneu.2016.01.007. Epub 2016 Jan 22. PMID: 26808467; PMCID: PMC4958044.

[56] Xiong Y, Dawson TM, Dawson VL. Models of LRRK2-Associated Parkinson's Disease. *Adv Neurobiol.* 2017;14:163-191. doi: 10.1007/978-3-319-49969-7_9. PMID: 28353284; PMCID: PMC5535810.

[57] Oun A, Sabogal-Guaqueta AM, Galuh S, Alexander A, Kortholt A, Dolga AM. The multifaceted role of LRRK2 in Parkinson's disease: From human iPSC to organoids. *Neurobiol Dis.* 2022 Oct 15;173:105837. doi: 10.1016/j.nbd.2022.105837. Epub 2022 Aug 11. PMID: 35963526.

[58] Domenicale C, Magnabosco S, Morari M. Modeling Parkinson's disease in LRRK2 rodents. *Neuronal Signal.* 2023 Aug 16;7(3):NS20220040. doi: 10.1042/NS20220040. PMID: 37601008; PMCID: PMC10432857.

[59] Zhi L, Qin Q, Muqeem T, Seifert EL, Liu W, Zheng S, Li C, Zhang H. Loss of PINK1 causes age-dependent decrease of dopamine release and mitochondrial dysfunction. *Neurobiol Aging.* 2019 Mar;75:1-10. doi: 10.1016/j.neurobiolaging.2018.10.025. Epub 2018 Nov 2. PMID: 30504091; PMCID: PMC6778692.

[60] Fu J, Jiang W, Shen L, Fu J, Duan X, Liu D, Long J, Ye S, Tang L, Yi YH, Long YS. Age-dependent impairment of dopamine D1 receptor signalling in mouse striatum by FMR1 variant P626L. *Brain Commun.* 2025 Sep 10;7(5):fcaf338. doi: 10.1093/braincomms/fcaf338. PMID: 40980401; PMCID: PMC12448934.

[61] Wang Z, Chan SW, Zhao H, Miu KK, Chan WY. Outlook of PINK1/Parkin signaling in molecular etiology of Parkinson's disease, with insights into Pink1 knockout models. *Zool Res.* 2023 May 18;44(3):559-576. doi: 10.24272/j.issn.2095-8137.2022.406. PMID: 37161651; PMCID: PMC10236303.

[62] Tripathi, U., Rosh, I., Ben Ezer, R. et al. Upregulated ECM genes and increased synaptic activity in Parkinson's human DA neurons with PINK1/ PRKN mutations. *npj Parkinsons Dis.* 10, 103 (2024). <https://doi.org/10.1038/s41531-024-00715-0>

[63] Gaweda-Walerych K, Sitek EJ, Narożńska E, Buratti E. Parkin beyond Parkinson's Disease-A Functional Meaning of Parkin Downregulation in TDP-43 Proteinopathies. *Cells.* 2021 Dec 1;10(12):3389. doi: 10.3390/cells10123389. PMID: 34943897; PMCID: PMC8699658.

[64] Peng Y, Jiang DY, Yao SY, Zhang X, Kazuo S, Liu J, Du MQ, Lin LX, Chen Q, Jin H. Gene-modified animal models of Parkinson's disease. *Exp Neurol.* 2025 Aug;390:115287. doi: 10.1016/j.expneurol.2025.115287. Epub 2025 May 4. PMID: 40328415.

[65] Konna EA, Swanberg M. Animal Models of Parkinson's Disease. In: Stoker TB, Greenland JC, editors. *Parkinson's Disease: Pathogenesis and Clinical Aspects [Internet].* Brisbane (AU): Codon Publications; 2018 Dec 21. Chapter 5. Available from: <https://www.ncbi.nlm.nih.gov/books/NBK536725/> doi: 10.15586/codonpublications.parkinsonsdisease.2018.ch5

[66] Regoni M, Zanetti L, Comai S, Mercatelli D, Novello S, Albanese F, Croci L, Consalez GG, Ciampola A, Valtorta F, Morari M, Sassone J. Early Dysfunction of Substantia Nigra Dopamine Neurons in the ParkinQ311X Mouse. *Biomedicines.* 2021 May 5;9(5):514. doi: 10.3390/biomedicines9050514. PMID: 34063112; PMCID: PMC8148213.

[67] Lind-Holm Mogensen, F., Scafidi, A., Poli, A. et al. PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. *J Neuroinflammation* 20, 95 (2023). <https://doi.org/10.1186/s12974-023-02776-z>

[68] Skou LD, Johansen SK, Okarmus J, Meyer M. Pathogenesis of DJ-1/PARK7-Mediated Parkinson's Disease. *Cells.* 2024 Feb 6;13(4):296. doi: 10.3390/cells13040296. PMID: 38391909; PMCID: PMC10887164.

[69] Rousseaux MW, Marcogliese PC, Qu D, Hewitt SJ, Seang S, Kim RH, Slack RS, Schlossmacher MG, Lagace DC, Mak TW, Park DS. Progressive dopaminergic cell loss with unilateral-to-bilateral progression in a genetic model of Parkinson disease. *Proc Natl Acad Sci U S A.* 2012 Sep 25;109(39):15918-23. doi: 10.1073/pnas.1205102109. Epub 2012 Sep 10. Erratum in: *Proc Natl Acad Sci U S A.* 2013 Jul 2;110(27):11212. PMID: 23019375; PMCID: PMC3465410.

[70] Guimarães RP, Resende MCS, Tavares MM, Belardinelli de Azevedo C, Ruiz MCM, Mortari MR. Construct, Face, and Predictive Validity of Parkinson's Disease Rodent Models. *Int J Mol Sci.* 2024 Aug 17;25(16):8971. doi: 10.3390/ijms25168971. PMID: 39201659; PMCID: PMC11354451.

- [71] Meredith GE, Rademacher DJ. MPTP mouse models of Parkinson's disease: an update. *J Parkinsons Dis.* 2011;1(1):19-33. doi: 10.3233/JPD-2011-11023. PMID: 23275799; PMCID: PMC3530193.
- [72] Tagkalidou N, Stevanović M, Romero-Alfano I, Elizalde-Velázquez GA, Herrera-Vázquez SE, Prats E, Gómez-Canela C, Gómez-Oliván LM, Raldúa D. Motor and Non-Motor Effects of Acute MPTP in Adult Zebrafish: Insights into Parkinson's Disease. *Int J Mol Sci.* 2025 Feb 16;26(4):1674. doi: 10.3390/ijms26041674. PMID: 40004138; PMCID: PMC11855887.
- [73] Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. *Pharmacol Ther.* 2019 May;197:61-82. doi: 10.1016/j.pharmthera.2019.01.001. Epub 2019 Jan 22. PMID: 30677475; PMCID: PMC6520143.
- [74] Islam MS, Azim F, Saju H, Zargaran A, Shirzad M, Kamal M, Fatema K, Rehman S, Azad MAM, Ebrahimi-Barough S. Pesticides and Parkinson's disease: Current and future perspective. *J Chem Neuroanat.* 2021 Sep;115:101966. doi: 10.1016/j.jchemneu.2021.101966. Epub 2021 May 12. PMID: 33991619.
- [75] Litteljohn D, Mangano E, Clarke M, Bobyn J, Moloney K, Hayley S. Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson's disease. *Parkinsons Dis.* 2010 Dec 30;2011:713517. doi: 10.4061/2011/713517. PMID: 21234362; PMCID: PMC3018622.
- [76] Livingston MG, Livingston HM. Monoamine oxidase inhibitors. An update on drug interactions. *Drug Saf.* 1996 Apr;14(4):219-27. doi: 10.2165/00002018-199614040-00002. PMID: 8713690.
- [77] Lai MC, Liu WY, Liou SS, Liu IM. Hispidin in the Medicinal Fungus Protects Dopaminergic Neurons from JNK Activation-Regulated Mitochondrial-Dependent Apoptosis in an MPP⁺-Induced In Vitro Model of Parkinson's Disease. *Nutrients.* 2023 Jan 20;15(3):549. doi: 10.3390/nu15030549. PMID: 36771255; PMCID: PMC9920671.
- [78] Mustapha M, Mat Taib CN. MPTP-induced mouse model of Parkinson's disease: A promising direction of therapeutic strategies. *Bosn J Basic Med Sci.* 2021 Aug 1;21(4):422-433. doi: 10.17305/bjbms.2020.5181. PMID: 33357211; PMCID: PMC8292858.
- [79] Timoshina YA, Pavlova AK, Voronkov DN, Abaimov DA, Latanov AV, Fedorova TN. Assessment of the Behavioral and Neurochemical Characteristics in a Mice Model of the Premotor Stage of Parkinson's Disease Induced by Chronic Administration of a Low Dose of MPTP. *Int J Mol Sci.* 2025 Sep 11;26(18):8856. doi: 10.3390/ijms26188856. PMID: 41009423; PMCID: PMC12469733.
- [80] Razali K, Kumar J, Mohamed WMY. Characterizing the adult zebrafish model of Parkinson's disease: a systematic review of dynamic changes in behavior and physiology post-MPTP administration. *Front Neurosci.* 2024 Sep 10;18:1432102. doi: 10.3389/fnins.2024.1432102. PMID: 39319314; PMCID: PMC11420122.
- [81] Hunt, J., Coulson, E.J., Rajnarayanan, R. et al. Sleep and circadian rhythms in Parkinson's disease and preclinical models. *Mol Neurodegeneration* 17, 2 (2022). <https://doi.org/10.1186/s13024-021-00504-w>
- [82] Santoro M, Fadda P, Klephan KJ, Hull C, Teismann P, Platt B, Riedel G. Neurochemical, histological, and behavioral profiling of the acute, sub-acute, and chronic MPTP mouse model of Parkinson's disease. *J Neurochem.* 2023 Jan;164(2):121-142. doi: 10.1111/jnc.15699. Epub 2022 Nov 9. PMID: 36184945; PMCID: PMC10098710.
- [83] Porras G, Li Q, Bezard E. Modeling Parkinson's disease in primates: The MPTP model. *Cold Spring Harb Perspect Med.* 2012 Mar;2(3):a009308. doi: 10.1101/csphperspect.a009308. PMID: 22393538; PMCID: PMC3282499.
- [84] Lama J, Buhidma Y, Fletcher EJR, Duty S. Animal models of Parkinson's disease: a guide to selecting the optimal model for your research. *Neuronal Signal.* 2021 Dec 8;5(4):NS20210026. doi: 10.1042/NS20210026. PMID: 34956652; PMCID: PMC8661507.
- [85] Bryda EC. The Mighty Mouse: the impact of rodents on advances in biomedical research. *Mo Med.* 2013 May-Jun;110(3):207-11. PMID: 23829104; PMCID: PMC3987984.
- [86] Latchoumycandane C, Anantharam V, Jin H, Kanthasamy A, Kanthasamy A. Dopaminergic neurotoxicant 6-OHDA induces oxidative damage through proteolytic activation of PKC δ in cell culture and animal models of Parkinson's disease. *Toxicol Appl Pharmacol.* 2011 Nov 1;256(3):314-23. doi: 10.1016/j.taap.2011.07.021. Epub 2011 Aug 6. PMID: 21846476; PMCID: PMC3205342.
- [87] Tieu K. A guide to neurotoxic animal models of Parkinson's disease. *Cold Spring Harb Perspect Med.* 2011 Sep;1(1):a009316. doi: 10.1101/csphperspect.a009316. PMID: 22229125; PMCID: PMC3234449.
- [88] Olufunmilayo EO, Gerke-Duncan MB, Holsinger RMD. Oxidative Stress and Antioxidants in

Neurodegenerative Disorders. *Antioxidants (Basel)*. 2023 Feb 18;12(2):517. doi: 10.3390/antiox12020517. PMID: 36830075; PMCID: PMC9952099.

[89] Ashok A, Andrabi SS, Mansoor S, Kuang Y, Kwon BK, Labhsetwar V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. *Antioxidants (Basel)*. 2022 Feb 17;11(2):408. doi: 10.3390/antiox11020408. PMID: 35204290; PMCID: PMC8869281.

[90] Roldán-Kalil JA, Vendrell-Gonzalez SE, Espinosa-Ponce N, Colón-Vasques J, Ortiz-Rivera J, Tsytarev V, Alves JM, Inyushin M. Impact of 6-OHDA injection and microtrauma in the rat substantia nigra on local brain amyloid beta protein concentrations in the affected area. *Histol Histopathol*. 2025 Apr;40(4):485-492. doi: 10.14670/HH-18-836. Epub 2024 Oct 22. PMID: 39512105; PMCID: PMC11925656.

[91] Wen P, Ren C. Research progress on intranasal treatment for Parkinson's disease. *Neuroprotection*. 2024; 2: 79-99. doi:10.1002/nep3.42

[92] Kumari N, Luthra PM. Establishment of a 6-OHDA Induced Unilaterally Lesioned Male Wistar Rat Model of Parkinson's Disease. *Methods Mol Biol*. 2024;2761:491-498. doi: 10.1007/978-1-0716-3662-6_33. PMID: 38427257.

[93] Sun X, Li X, Zhang L, Zhang Y, Qi X, Wang S, Qin C. Longitudinal assessment of motor function following the unilateral intrastratal 6-hydroxydopamine lesion model in mice. *Front Behav Neurosci*. 2022 Nov 24;16:982218. doi: 10.3389/fnbeh.2022.982218. PMID: 36505729; PMCID: PMC9730519.

[94] Mendes-Pinheiro B, Soares-Cunha C, Marote A, Loureiro-Campos E, Campos J, Barata-Antunes S, Monteiro-Fernandes D, Santos D, Duarte-Silva S, Pinto L, José Salgado A. Unilateral Intrastratal 6-Hydroxydopamine Lesion in Mice: A Closer Look into Non-Motor Phenotype and Glial Response. *Int J Mol Sci*. 2021 Oct 26;22(21):11530. doi: 10.3390/ijms22211530. PMID: 34768962; PMCID: PMC8584172.

[95] Altarche-Xifro W, di Vicino U, Muñoz-Martin MI, Bortolozzi A, Bové J, Vila M, Cosma MP. Functional Rescue of Dopaminergic Neuron Loss in Parkinson's Disease Mice After Transplantation of Hematopoietic Stem and Progenitor Cells. *EBioMedicine*. 2016 Jun;8:83-95. doi: 10.1016/j.ebiom.2016.04.016. Epub 2016 Apr 19. PMID: 27428421; PMCID: PMC4919540.

[96] Prates-Rodrigues M, Schweizer BLA, de Paula Gomes C, Ribeiro ÂM, Padovan-Neto FE, Masini D, Lopes-Aguiar C. Challenges and Opportunities in Exploring Non-Motor Symptoms in 6-Hydroxydopamine Models of Parkinson's Disease: A Systematic Review. *J Neurochem*. 2025 Feb;169(2):e70008. doi: 10.1111/jnc.70008. PMID: 39901598; PMCID: PMC11791392.

[97] Cui, J., Zhao, D., Xu, M. et al. Characterization of graded 6-Hydroxydopamine unilateral lesion in medial forebrain bundle of mice. *Sci Rep* 14, 3721 (2024). <https://doi.org/10.1038/s41598-024-54066-0>

[98] Santoro M, Lam RK, Blumenfeld SE, Tan W, Ciari P, Chu EK, Saw NL, Rijksketic DR, Lin JS, Heifets BD, Shamloo M. Mapping of catecholaminergic denervation, neurodegeneration, and inflammation in 6-OHDA-treated Parkinson's disease mice. *NPJ Parkinsons Dis*. 2025 Feb 11;11(1):28. doi: 10.1038/s41531-025-00872-w. PMID: 39934193; PMCID: PMC11814337.

[99] Magrinelli F, Picelli A, Tocco P, Federico A, Roncari L, Smania N, Zanette G, Tamburin S. Pathophysiology of Motor Dysfunction in Parkinson's Disease as the Rationale for Drug Treatment and Rehabilitation. *Parkinsons Dis*. 2016;2016:9832839. doi: 10.1155/2016/9832839. Epub 2016 Jun 6. PMID: 27366343; PMCID: PMC4913065.

[100] Wichmann T, Nelson A, Torres ERS, Svenningsson P, Marongiu R. Leveraging animal models to understand non-motor symptoms of Parkinson's disease. *Neurobiol Dis*. 2025 May;208:106848. doi: 10.1016/j.nbd.2025.106848. Epub 2025 Feb 27. PMID: 40023327.

[101] Khan E, Hasan I, Haque ME. Parkinson's Disease: Exploring Different Animal Model Systems. *Int J Mol Sci*. 2023 May 22;24(10):9088. doi: 10.3390/ijms24109088. PMID: 37240432; PMCID: PMC10219045.

[102] Sheta R, Bérard M, Musiol D, Martínez-Drudis L, Oueslati A. Behavioral analysis of motor and non-motor impairment in rodent models of Parkinson's disease. *Front Aging Neurosci*. 2024 Dec 23;16:1464706. doi: 10.3389/fnagi.2024.1464706. PMID: 39763579; PMCID: PMC11701160.

[103] Subhan I, Siddique YH. Effect of Rotenone on the Neurodegeneration among Different Models. *Curr Drug Targets*. 2024;25(8):530-542. doi: 10.2174/0113894501281496231226070459. PMID: 38698744.

[104] Zhang Y, Guo H, Guo X, Ge D, Shi Y, Lu X, Lu J, Chen J, Ding F, Zhang Q. Involvement of Akt/mTOR in the Neurotoxicity of Rotenone-Induced Parkinson's Disease Models. *Int J Environ Res Public Health*. 2019 Oct 10;16(20):3811. doi: 10.3390/ijerph16203811. PMID: 31658620; PMCID: PMC6843606.

[105] Miyazaki I, Isooka N, Imafuku F, Sun J, Kikuoka R, Furukawa C, Asanuma M. Chronic Systemic Exposure

to Low-Dose Rotenone Induced Central and Peripheral Neuropathology and Motor Deficits in Mice: Reproducible Animal Model of Parkinson's Disease. *Int J Mol Sci.* 2020 May 4;21(9):3254. doi: 10.3390/ijms21093254. PMID: 32375371; PMCID: PMC7246801.

[106] Van Laar AD, Webb KR, Keeney MT, Van Laar VS, Zharikov A, Burton EA, Hastings TG, Glajch KE, Hirst WD, Greenamyre JT, Rocha EM. Transient exposure to rotenone causes degeneration and progressive parkinsonian motor deficits, neuroinflammation, and synucleinopathy. *NPJ Parkinsons Dis.* 2023 Aug 11;9(1):121. doi: 10.1038/s41531-023-00561-6. PMID: 37567894; PMCID: PMC10421849.

[107] Ashok C, Rajasekaran NK, Jeyabalan S, Veeraraghavan G, Suresh S, Sugumar R, Jabaris SL, Subramaniyan V, Wong LS. Comparative evaluation of MPTP and rotenone as inducing agents for Parkinson's disease in adult zebrafish: Behavioural and histopathological insights. *Toxicol Rep.* 2025 Jul 12;15:102084. doi: 10.1016/j.toxrep.2025.102084. PMID: 40726591; PMCID: PMC12302763.

[108] García-González N, Gonçalves-Sánchez J, Gómez-Nieto R, Gonçalves-Estella JM, López DE. Advances and Challenges in Gene Therapy for Neurodegenerative Diseases: A Systematic Review. *Int J Mol Sci.* 2024 Nov 21;25(23):12485. doi: 10.3390/ijms252312485. PMID: 39684197; PMCID: PMC11640776.

[109] Zhang XF, Thompson M, Xu YH. Multifactorial theory applied to the neurotoxicity of paraquat and paraquat-induced mechanisms of developing Parkinson's disease. *Lab Invest.* 2016 May;96(5):496-507. doi: 10.1038/labinvest.2015.161. Epub 2016 Feb 1. PMID: 26829122.

[110] See, W.Z.C., Naidu, R. & Tang, K.S. Cellular and Molecular Events Leading to Paraquat-Induced Apoptosis: Mechanistic Insights into Parkinson's Disease Pathophysiology. *Mol Neurobiol* 59, 3353–3369 (2022). <https://doi.org/10.1007/s12035-022-02799-2>

[111] Martinez TN, Greenamyre JT. Toxin models of mitochondrial dysfunction in Parkinson's disease. *Antioxid Redox Signal.* 2012 May 1;16(9):920-34. doi: 10.1089/ars.2011.4033. Epub 2011 Jul 12. PMID: 21554057; PMCID: PMC3292753.

[112] Chen J, Su Y, Lin F, Iqbal M, Mehmood K, Zhang H, Shi D. Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. *Ecotoxicol Environ Saf.* 2021 Nov;224:112711. doi: 10.1016/j.ecoenv.2021.112711. Epub 2021 Aug 26. PMID: 34455184.

[113] Lee KH, Cha M, Lee BH. Neuroprotective Effect of Antioxidants in the Brain. *Int J Mol Sci.* 2020 Sep 28;21(19):7152. doi: 10.3390/ijms21197152. PMID: 32998277; PMCID: PMC7582347.

[114] Inamdar AA, Chaudhuri A, O'Donnell J. The Protective Effect of Minocycline in a Paraquat-Induced Parkinson's Disease Model in *Drosophila* is Modified in Altered Genetic Backgrounds. *Parkinsons Dis.* 2012;2012:938528. doi: 10.1155/2012/938528. Epub 2012 Jul 30. PMID: 22900232; PMCID: PMC3413958.

[115] Reynolds A, Cody E, Giltrap M, Chambers G. Toxicological and Biomarker Assessment of Freshwater Zebra Mussels (*Dreissena polymorpha*) Exposed to Nano-Polystyrene. *Toxics.* 2024 Oct 24;12(11):774. doi: 10.3390/toxics12110774. PMID: 39590954; PMCID: PMC11598157.

[116] Shin HW, Chung SJ. Drug-induced parkinsonism. *J Clin Neurol.* 2012 Mar;8(1):15-21. doi: 10.3988/jcn.2012.8.1.15. Epub 2012 Mar 31. PMID: 22523509; PMCID: PMC3325428.

[117] Bernstein AI, Stout KA, Miller GW. The vesicular monoamine transporter 2: an underexplored pharmacological target. *Neurochem Int.* 2014 Jul;73:89-97. doi: 10.1016/j.neuint.2013.12.003. Epub 2014 Jan 4. PMID: 24398404; PMCID: PMC5028832.

[118] German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. *Pharmacol Rev.* 2015 Oct;67(4):1005-24. doi: 10.1124/pr.114.010397. PMID: 26408528; PMCID: PMC4630566.

[119] Fernandes VS, Ribeiro AM, Melo TG, Godinho M, Barbosa FF, Medeiros DS, Munguba H, Silva RH. Memory impairment induced by low doses of reserpine in rats: possible relationship with emotional processing deficits in Parkinson disease. *Prog Neuropsychopharmacol Biol Psychiatry.* 2008 Aug 1;32(6):1479-83. doi: 10.1016/j.pnpbp.2008.05.004. Epub 2008 May 11. PMID: 18579275.

[120] Silva RH, Lopes-Silva LB, Cunha DG, Becegato M, Ribeiro AM, Santos JR. Animal Approaches to Studying Risk Factors for Parkinson's Disease: A Narrative Review. *Brain Sci.* 2024 Feb 2;14(2):156. doi: 10.3390/brainsci14020156. PMID: 38391730; PMCID: PMC10887213.

[121] Lima AC, Meurer YSR, Bioni VS, Cunha DMG, Gonçalves N, Lopes-Silva LB, Becegato M, Soares MBL, Marinho GF, Santos JR, Silva RH. Female Rats Are Resistant to Cognitive, Motor and Dopaminergic Deficits in the Reserpine-Induced Progressive Model of Parkinson's Disease. *Front Aging Neurosci.* 2021 Oct 25;13:757714. doi: 10.3389/fnagi.2021.757714. PMID: 34759815; PMCID: PMC8573221.

[122] Li Y, Yin Q, Wang B, Shen T, Luo W, Liu T. Preclinical reserpine models recapitulating motor and non-motor features of Parkinson's disease: Roles of epigenetic upregulation of alpha-synuclein and autophagy impairment. *Front Pharmacol.* 2022 Oct 12;13:944376. doi: 10.3389/fphar.2022.944376. PMID: 36313295; PMCID: PMC9597253.

[123] Santa C, Rodrigues D, Coelho JF, Anjo SI, Mendes VM, Bessa-Neto D, Dunn MJ, Cotter D, Baltazar G, Monteiro P, Manadas B. Chronic treatment with D2-antagonist haloperidol leads to inhibitory/excitatory imbalance in striatal D1-neurons. *Transl Psychiatry.* 2023 Oct 6;13(1):312. doi: 10.1038/s41398-023-02609-w. PMID: 37803004; PMCID: PMC10558446.

[124] Fan Y, Han J, Zhao L, Wu C, Wu P, Huang Z, Hao X, Ji Y, Chen D, Zhu M. Experimental Models of Cognitive Impairment for Use in Parkinson's Disease Research: The Distance Between Reality and Ideal. *Front Aging Neurosci.* 2021 Nov 29;13:745438. doi: 10.3389/fnagi.2021.745438. Erratum in: *Front Aging Neurosci.* 2021 Dec 21;13:827753. doi: 10.3389/fnagi.2021.827753. PMID: 34912207; PMCID: PMC8667076.

[125] Velickovic U, Selakovic D, Jovicic N, Mitrovic M, Janjic V, Rosic S, Randjelovic S, Milovanovic D, Rosic G. The Advances in Antipsychotics-Induced Dyskinesia Rodent Models: Benefits of Antioxidant Supplementation. *Biomedicines.* 2025 Feb 18;13(2):512. doi: 10.3390/biomedicines13020512. Erratum in: *Biomedicines.* 2025 Sep 10;13(9):2216. doi: 10.3390/biomedicines13092216. PMID: 40002925; PMCID: PMC11853207.

Author Contributions: writing—original draft preparation, A.V.P.; writing—review and editing, A.A.V, E.R.K., O.N.M., A.S.U., A.N.O.

Funding: This research was funded by Russian Science Foundation, grant number 25-15-00483

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.