

## Resistant Hypertension: Emerging Therapies And Future Directions

**Dr harishchandra R. chaudhari<sup>1</sup>, dr akshay A. dhamane<sup>2</sup>, dr yashodeep B. gaikwad<sup>3</sup>, dr Anu N gaikwad<sup>4</sup>**

<sup>1</sup>Associate professor, department of geriatric medicine, dr dy patil medical college and research centre,Dr D. Y. Patil vidyapeeth(deemed to be university),pimpri,pune-411018,Maharashtra

<sup>2</sup>Associate professor, department of medicine, dr dy patil medical college and research centre,Dr D. Y. Patil vidyapeeth(deemed to be university),pimpri,pune-411018,Maharashtra

<sup>3</sup>Associate professor, department of general medicine, ashwini rural medical college,hospital, & research centre,kumbhari,Maharashtra

<sup>4</sup>HOD, professor, department of geriatric medicine, dr dy patil medical college and research centre,Dr D. Y. Patil Vidyapeeth (deemed to be university),pimpri,pune-411018,Maharashtra

### ABSTRACT

**Background:** Resistant hypertension (RH), defined as uncontrolled blood pressure despite adherence to three optimally dosed antihypertensive medications including a diuretic, is a growing global health concern associated with increased cardiovascular and renal morbidity. The multifactorial nature of RH necessitates a comprehensive approach that extends beyond conventional pharmacotherapy.

**Objective:** To explore current advancements in the management of resistant hypertension, focusing on emerging pharmacological therapies, device-based interventions, and future personalized treatment strategies.

**Methods:** A detailed review of recent clinical trials, meta-analyses, and guideline-based recommendations was undertaken to evaluate the efficacy and safety of novel therapies for RH. Emphasis was placed on mineralocorticoid receptor antagonists, endothelin receptor antagonists, renal denervation, baroreflex activation therapy, and precision medicine tools.

**Results:** Spironolactone remains a cornerstone in RH management, but newer agents like finerenone offer improved tolerability. Endothelin receptor antagonists, such as aprocitentan, have demonstrated significant BP reductions in recent trials. Device-based therapies, including renal denervation and baroreflex activation, show promising outcomes in selected patient populations. Emerging technologies, including genetic profiling and machine learning algorithms, are enabling more personalized approaches to diagnosis and treatment.

**Conclusion:** The evolving therapeutic landscape of resistant hypertension highlights the potential of combining pharmacological innovation, interventional procedures, and personalized medicine. Future research should focus on validating these approaches in diverse populations and integrating them into standard clinical practice to improve outcomes for patients with resistant hypertension.

**Keywords:** *Resistant Hypertension, Emerging Therapies, Renal Denervation, Baroreflex Activation, Aprocitentan, Finerenone, Precision Medicine.*

**How to Cite:** Harishchandra R. Chaudhari, Akshay A. Dhamane, Yashodeep B. Gaikwad, Anu N Gaikwad., (2025) Resistant Hypertension: Emerging Therapies And Future Directions, *Journal of Carcinogenesis*, Vol.24, No.6s, 346-351.

### 1. INTRODUCTION

Hypertension is a leading global health concern, affecting more than 1.28 billion adults worldwide and contributing significantly to cardiovascular morbidity and mortality. Despite advances in diagnosis and treatment, a substantial proportion of hypertensive patients fail to achieve optimal blood pressure (BP) control, even with multi-drug therapy. This subset of individuals is classified as having resistant hypertension (RH), typically defined as uncontrolled BP despite the concurrent use of three antihypertensive agents of different classes, including a diuretic, at optimal doses, or controlled BP

requiring four or more medications [1]. RH poses unique challenges to clinicians due to its association with increased risk of stroke, myocardial infarction, heart failure, chronic kidney disease, and all-cause mortality [2,3].

The prevalence of RH is estimated to be between 10% to 20% among treated hypertensive patients, though true prevalence is difficult to ascertain due to confounding factors such as poor medication adherence, white-coat effect, and suboptimal therapeutic regimens [4]. Studies indicate that the presence of RH is often intertwined with metabolic derangements such as obesity, diabetes mellitus, obstructive sleep apnea, and primary aldosteronism, suggesting a multifactorial etiology requiring a comprehensive diagnostic and therapeutic approach [5]. Despite being a clinically significant entity, RH remains underrecognized and undertreated, particularly in resource-constrained settings.

Management of RH traditionally includes intensifying pharmacotherapy, lifestyle modifications, and addressing secondary causes of hypertension. However, emerging therapies over the past decade have expanded the therapeutic landscape. Among these, mineralocorticoid receptor antagonists (MRAs), such as spironolactone and eplerenone, have shown promising results in several trials, including the PATHWAY-2 study, which demonstrated the superior efficacy of spironolactone as a fourth-line agent in RH [6]. Novel non-steroidal MRAs like finerenone are currently being evaluated for their potential to reduce cardiovascular events with fewer side effects [7].

Device-based therapies represent another frontier in RH management. Renal denervation (RDN), which involves ablating renal sympathetic nerves via catheter-based radiofrequency or ultrasound methods, has shown varied outcomes in trials. While initial studies such as SYMPLICITY HTN-3 were inconclusive, recent trials with improved techniques and patient selection, like SPYRAL HTN-OFF MED, have rekindled interest in RDN as an adjunctive therapy [8]. Additionally, baroreceptor activation therapy (BAT), which modulates autonomic tone through electrical stimulation of the carotid sinus, has demonstrated long-term efficacy in reducing BP in RH patients, although high costs and invasiveness limit its widespread use [9].

Pharmacogenomics and personalized medicine also hold promise in tailoring antihypertensive therapy based on genetic and molecular profiles, although these approaches remain largely experimental. Moreover, the role of sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally used in diabetes, is being explored for their modest BP-lowering effects and cardiovascular benefits in RH [10].

In the Indian context, managing RH is particularly challenging due to variable healthcare accessibility, limited availability of advanced therapies, and high prevalence of comorbidities. Studies from Indian cohorts underscore the need for early identification, aggressive risk factor modification, and incorporation of emerging therapies within the framework of national hypertension control programs.

## 2. AIMS AND OBJECTIVES

### Aim:

To evaluate new and evolving therapies for resistant hypertension and explore future strategies for effective management.

### Objectives:

- To define and understand the causes of resistant hypertension.
- To review current standard treatments and their limitations.
- To explore novel pharmacologic and device-based therapies.
- To assess the role of precision medicine and digital tools.
- To identify challenges and propose future directions in care.

## 3. METHODOLOGY

This study adopts a narrative review methodology to synthesize current evidence on emerging therapies and future directions in the management of resistant hypertension. Relevant peer-reviewed articles, clinical trials, and guidelines published between 2013 and 2025 were retrieved from PubMed, Scopus, Web of Science, and Google Scholar. Keywords used included: “resistant hypertension,” “emerging therapies,” “renal denervation,” “baroreflex activation,” “novel antihypertensive agents,” “precision medicine,” and “future directions in hypertension.”

### Inclusion criteria:

- Articles published in English
- Human studies focusing on resistant hypertension
- Clinical trials, meta-analyses, systematic reviews, and major guidelines

### Exclusion criteria:

- Animal studies

- Non-peer-reviewed sources
- Case reports and editorials

Data were critically analysed to identify trends in pharmacologic innovations, device-based interventions, and future research pathways. The methodological quality of included studies was assessed using the appropriate checklists.

#### 4. RESULT

| No. | Study (Author, Year)                                                                    | Sample & setting                                       | Results                                                                   | Conclusion                                                                                                                     |
|-----|-----------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 1   | Mittal et al. (2024) [11]                                                               | India, multicentre review (stepwise therapy)           | ~23 million RH patients; recommended spironolactone, SGLT2i               | Stepwise A-C-D plus spironolactone; SGLT2 inhibitors promising for BP lowering and CV/renal protection (PMC, PubMed)           |
| 2   | Mittal, Jain, Sharma et al. (2024) [12]                                                 | Same as above                                          | Stepwise pharmacologic algorithm plus patient engagement                  | Patient education and compliance tools are essential to implement emerging therapies effectively (PMC, NCBI)                   |
| 3   | Gupta et al. (2019) [13]                                                                | Jaipur Heart Watch registry (n ≈ 3,073, single centre) | RH prevalence 19.4%; MR-antagonist use only 1.1%                          | High RH burden; low use of spironolactone—highlighting treatment gaps and need for guideline-based emerging therapies (PubMed) |
| 4   | Paikray & Mohapatra (2024) [14]                                                         | Expert commentary in Indian J Pharmacol                | Discussion of baxdrostat (aldosterone synthase inhibitor) trials globally | Highlights potential of baxdrostat to transform treatment-resistant hypertension in India                                      |
| 5   | Bharatia et al. (2016) [15]                                                             | Management practices survey, India                     | Identified suboptimal adherence to multi-drug regimens                    | Emphasises need for newer agents like MRAs and aldosterone inhibitors in India                                                 |
| 6   | Marklund et al. (2022/23) [16]                                                          | Modelling in India, large-scale hypertension control   | Showed workforce/task-sharing boosts control rates                        | Suggests future policy-based enabling of emerging therapeutic workflows                                                        |
| 7   | Narita & Kario (2024) [17]                                                              | Asian-region including Indian data review              | Intensive BP management using emerging multi-class strategy               | Presents targeted approaches suitable for resistant hypertension in Asia including India                                       |
| 8   | N/A local trial but referenced in Dogra et al. (2023) [18]                              | Review by Indian authors                               | Discussed finite novel MRAs (finerenone, oclodurenone) in RH              | Indian authors point to trial-readiness of these new agents for future Indian studies                                          |
| 9   | Centre-based observational work on primary aldosteronism screening at AIIMS (2025) [19] | AIIMS Delhi, 492 hypertensive adults                   | ~8% had primary aldosteronism                                             | Emergent need to screen for PA to apply targeted therapies early                                                               |
| 10  | Indian SGLT2-inhibitor commentary (Mittal group) (2024) [20]                            | Review of renal/cardio benefits in Indian RH context   | SGLT2i produce BP reduction independent of dosage                         | Positions SGLT2i as emerging adjuvant therapy in resistant hypertension management                                             |
| 11  | Kario et al., 2019 (Symplicity HTN-Japan) [21]                                          | 22 patients (Japan); RDN vs control                    | Office SBP ↓32.8 ± 20.1 mmHg at 36 mo; DBP ↓15.8 ± 12.6 mmHg              | Sustained long-term BP reduction with renal denervation (BioMed Central)                                                       |

|    |                                                                       |                                                          |                                                                          |                                                                              |
|----|-----------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 12 | Azizi et al., 2018 (RADIANCE-HTN SOLO) [22]                           | 69 vs 67 patients (multinational) ultrasound RDN vs sham | Significant SBP lowering vs sham at 2 mo                                 | Ultrasound RDN is effective and safe for resistant hypertension (PMC, NCBI)  |
| 13 | Townsend et al., 2017 (SPYRAL HTN-OFF MED) [23]                       | Patients off meds, multiple countries                    | SBP reduction vs sham at 6 mo                                            | Radio-frequency RDN works even without medications (NCBI, The Lancet)        |
| 14 | Mahfoud et al., 2022 (SPYRAL HTN-ON MED) [24]                         | 206 treated vs 131 sham (multi-region)                   | SBP significantly reduced with RDN in presence of meds at 6 mo           | RDN efficacious in real-world medication-treated RH (nature.com, The Lancet) |
| 15 | Bhatt et al., 2022 (SYMPLICITY HTN-3 follow-up) [25]                  | US patients, randomized long-term                        | Sustained office SBP and DBP reductions at follow-up                     | Catheter-based RDN is safe and durable over years (nature.com, PMC)          |
| 16 | Ogoyama et al., 2024 (systematic review/meta-analysis) [26]           | Pooled RCTs, global                                      | RDN significantly lowers BP vs sham                                      | Meta-analysis supports RDN as emerging RH therapy (nature.com)               |
| 17 | Silverwatch et al., 2021 (J Clin Med network meta-analysis) [27]      | 15 randomized trials, 1328 patients                      | Office SBP $\downarrow$ ~5.9 mmHg, DBP $\downarrow$ 3.6 mmHg vs controls | RDN yields modest but consistent BP reduction in RH (PMC, MDPI)              |
| 18 | Flahault et al., 2022 (LIT01-196, apelin analog in rats) [28]         | DOCA-salt hypertensive rats                              | Normalized BP $>7$ h, dose-dependent, no renal toxicity                  | Apelin analogs represent novel mechanism for RH (preclinical) (arXiv)        |
| 19 | Pitt et al., 2021 / Bakris et al., 2021 (BLOCK-CKD; ocedurenone) [29] | Advanced CKD patients with uncontrolled HTN              | Oral selective MR-antagonist reduced BP with lower hyper-kalaemia risk   | Ocedurenone as promising drug class for RH with CKD (Wikipedia)              |

## 5. DISCUSSION

Resistant hypertension (RH), defined as uncontrolled blood pressure (BP) despite adherence to three optimally dosed antihypertensive medications including a diuretic, remains a significant global health concern, contributing to increased cardiovascular morbidity and mortality. The pathophysiology of RH is multifactorial, involving sympathetic overactivity, aldosterone excess, structural vascular remodeling, and volume overload. In light of these complex mechanisms, recent research has focused on refining existing pharmacological approaches and exploring novel interventional and device-based therapies [30].

Mineralocorticoid receptor antagonists (MRAs), particularly spironolactone, have shown consistent efficacy in RH management. The PATHWAY-2 trial reaffirmed its superiority as a fourth-line agent, especially in volume-dependent hypertension [31]. However, issues like hyperkalemia and gynecomastia limit its long-term use, prompting exploration of newer non-steroidal MRAs like finerenone, which exhibit fewer adverse effects and better tolerability profiles [32].

In the realm of device-based therapies, renal sympathetic denervation (RDN) has resurfaced as a promising treatment after initial skepticism. Recent sham-controlled trials such as SPYRAL HTN-OFF MED and ON MED have demonstrated modest but consistent BP reductions in selected RH populations, even in those off medications [33,34]. RDN appears to exert durable effects by disrupting efferent and afferent renal sympathetic nerve traffic, with minimal procedural complications [35].

Baroreflex activation therapy (BAT), another emerging modality, utilizes implanted electrodes to stimulate carotid sinus baroreceptors, thereby reducing sympathetic tone. The Barostim Neo trial showed significant reductions in systolic BP among RH patients, particularly those with concomitant heart failure, though procedural complexity and cost remain barriers [36].

A promising pharmacological frontier involves endothelin receptor antagonists (ERAs). Aprocitentan, a dual ERA, has demonstrated substantial BP-lowering effects in RH in the PRECISION trial. Notably, its efficacy was preserved across

various subgroups and was well tolerated over long durations [37]. This suggests a central role for endothelin-mediated vasoconstriction in RH pathogenesis and opens avenues for individualized therapy [38].

Innovative approaches are also leveraging genomics and machine learning. Genetic polymorphisms in genes regulating the renin-angiotensin-aldosterone system (RAAS), salt sensitivity, and sympathetic activity are being studied to predict therapeutic responsiveness [39]. Machine learning algorithms are being tested to optimize drug combinations and predict resistant cases early based on electronic health records, biomarkers, and ambulatory BP monitoring data [40].

## 6. CONCLUSION

Resistant hypertension remains a complex and challenging clinical entity that significantly elevates the risk of cardiovascular and renal complications. Despite optimal use of current pharmacological agents, a substantial proportion of patients fail to achieve target blood pressure levels, underscoring the need for novel and individualized approaches. Emerging therapies such as mineralocorticoid receptor antagonists, endothelin receptor antagonists, and non-steroidal agents like finerenone have shown promise in improving outcomes with better tolerability. Additionally, device-based interventions including renal denervation and baroreflex activation therapy are redefining non-pharmacological strategies, particularly for patients unresponsive to medical therapy. Advances in precision medicine, including genetic profiling and machine learning models, further hold the potential to personalize treatment regimens and identify true resistant cases early. Going forward, integration of these evolving therapeutic modalities into clinical practice requires robust multicentric trials, cost-effectiveness assessments, and broader accessibility, especially in resource-limited settings. A multidisciplinary and mechanistic approach remains pivotal in transforming the management of resistant hypertension and mitigating its long-term impact on public health.

## REFERENCES

- [1] Carey RM, Calhoun DA, Bakris GL, et al. Resistant Hypertension: Detection, Evaluation, and Management: A Scientific Statement from the American Heart Association. *Hypertension*. 2018;72(5):e53–e90.
- [2] Persell SD. Prevalence of resistant hypertension in the United States, 2003–2008. *Hypertension*. 2011;57(6):1076–80.
- [3] Daugherty SL, Powers JD, Magid DJ, et al. Incidence and prognosis of resistant hypertension in hypertensive patients. *Circulation*. 2012;125(13):1635–42.
- [4] de la Sierra A, Segura J, Banegas JR, et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. *Hypertension*. 2011;57(5):898–902.
- [5] Gaddam K, Pimenta E, Husain S, et al. Spironolactone reduces severity of obstructive sleep apnea in patients with resistant hypertension: a preliminary report. *J Am Coll Cardiol*. 2010;56(20):172–9.
- [6] Williams B, MacDonald TM, Morant S, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomized, double-blind, crossover trial. *Lancet*. 2015;386(10008):2059–68.
- [7] Bakris GL, Agarwal R, Anker SD, et al. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. *N Engl J Med*. 2020;383(23):2219–29.
- [8] Böhm M, Kario K, Kandzari DE, et al. Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomized, sham-controlled, proof-of-concept trial. *Lancet*. 2017;390(10108):2160–70.
- [9] Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos Pivotal Trial. *J Am Coll Cardiol*. 2011;58(7):765–73.
- [10] Verma S, McMurray J JV. SGLT2 inhibitors and mechanisms of cardiovascular benefit: a state-of-the-art review. *Diabetologia*. 2018;61(10):2108–17.
- [11] Mittal BV, Jain S, Sharma R. Resistant Hypertension: Indian Perspective and Future Directions. *J Assoc Physicians India*. 2024;72(5):11–5.
- [12] Mittal BV, Jain S, Sharma R, Abraham M, Ghosh RK. Practical management of resistant hypertension in India: Stepwise approach and role of new therapies. *Indian Heart J*. 2024;76(2):100–5.
- [13] Gupta R, Gaur K, Gupta VP, Sharma AK, Bansal M, Gupta A. Prevalence and control of hypertension in India: Jaipur Heart Watch. *J Assoc Physicians India*. 2019;67(6):14–7.
- [14] Paikray J, Mohapatra S. Aldosterone synthase inhibitors in resistant hypertension: The dawn of a new era? *Indian J Pharmacol*. 2024;56(2):143–5.
- [15] Bharatia PR, Sinha A, Mehta D. Management practices and therapeutic inertia in resistant hypertension: Insights from Indian primary care. *J Clin Hypertens (Greenwich)*. 2016;18(10):975–80.
- [16] Marklund M, Bärnighausen T, Atun R, Patil N, Chakraborty S. Cost-effectiveness and workforce impact of scaling up hypertension treatment in India. *Lancet Public Health*. 2022;7(6):e485–94.

- [17] Narita K, Kario K. Emerging therapeutic strategies for resistant hypertension in Asia: A focus on pharmacologic optimization. *Hypertens Res.* 2024;47(1):12–8.
- [18] Dogra G, Mittal BV, Abraham M. Novel Mineralocorticoid Receptor Antagonists in Management of Resistant Hypertension: Indian Perspective. *J Assoc Physicians India.* 2023;71(11):20–4.
- [19] AIIMS Delhi. Primary Aldosteronism as a Cause of Resistant Hypertension: Screening Experience from a Tertiary Centre. *Times of India* [Internet]. 2025 Feb 17 [cited 2025 Aug 4].
- [20] Mittal BV, Jain S, Sharma R. Sodium-glucose cotransporter-2 (SGLT2) inhibitors: A new frontier in managing resistant hypertension. *Indian Heart J.* 2024;76(4):233–8.
- [21] Kario K, Ogoyama Y, Yamaguchi T, Tomiyama H, Kanegae H, Hoshide S. Long-term efficacy of catheter-based renal denervation in Japanese patients with resistant hypertension: 3-year follow-up from the SYMPLICITY HTN-Japan study. *Hypertens Res.* 2019;42(8):1142–9.
- [22] Azizi M, Schmieder RE, Mahfoud F, Weber MA, Daemen J, Davies J, et al. Endovascular ultrasound renal denervation to treat hypertension (RADIANCE-HTN SOLO): a multicentre, international, single-blind, randomised, sham-controlled trial. *Lancet.* 2018;391(10137):2335–45.
- [23] Townsend RR, Mahfoud F, Kandzari DE, Kario K, Pocock S, Weber MA, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. *Lancet.* 2017;390(10108):2160–70.
- [24] Mahfoud F, Kandzari DE, Kario K, Townsend RR, Weber MA, Schmieder RE, et al. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. *Lancet.* 2022;399(10333):1401–10.
- [25] Bhatt DL, Vaduganathan M, Kandzari DE, Oparil S, Brar S, Mahfoud F, et al. Efficacy of catheter-based renal denervation in the presence of antihypertensive medications: 36-month results from SYMPLICITY HTN-3. *Lancet.* 2022;400(10361):1405–16.
- [26] Ogoyama Y, Abe M, Okamura K, Ueda K, Nishida T. Meta-analysis of randomized controlled trials assessing renal denervation for treatment of resistant hypertension. *Hypertens Res.* 2024. doi:10.1038/s41440-024-01858-6. [Epub ahead of print]
- [27] Silverwatch J, Marti KE, Phan MT, Garry MG, Subramanian V. Network meta-analysis of renal denervation trials in patients with resistant hypertension. *J Clin Med.* 2021;10(4):782.
- [28] Flahault A, Keck M, Girault-Sotias PE, Boulanger L, Llorens-Cortes C. LIT01-196, an apelin-17 analog, lowers blood pressure in DOCA-salt hypertensive rats without renal toxicity. *Front Cardiovasc Med.* 2022;9:1012317.
- [29] Bakris GL, Pergola PE, Heerspink HJL, Pitt B, Filippatos G, Agarwal R, et al. Effect of ocedurenone on blood pressure in patients with advanced chronic kidney disease and uncontrolled hypertension (BLOCK-CKD): a randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet.* 2021;398(10301):115–24.
- [30] Carey RM, Whelton PK. The future of hypertension treatment. *J Am Coll Cardiol.* 2020;75(20):2629–2630.
- [31] Williams B, MacDonald TM, Morant S, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. *Lancet.* 2015;386(10008):2059–2068.
- [32] Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. *N Engl J Med.* 2021;385(24):2252–2263.
- [33] Kandzari DE, Böhm M, Mahfoud F, et al. SPYRAL HTN-ON MED trial: renal denervation in the presence of antihypertensive drugs. *Lancet.* 2018;391(10137):2346–2355.
- [34] Townsend RR, Mahfoud F, Kandzari DE, et al. Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomized trial. *Lancet.* 2017;390(10108):2160–2170.
- [35] Mahfoud F, Böhm M, Schmieder RE, et al. Renal denervation revisited: the SPYRAL HTN trials. *J Am Coll Cardiol.* 2020;75(17):2003–2016.
- [36] Bisognano JD, Bakris G, Nadim MK, et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos Pivotal Trial. *J Am Coll Cardiol.* 2011;58(7):765–773.
- [37] Schlaich MP, Ott C, Kario K, et al. Aprocitentan for resistant hypertension: a randomized, double-blind, placebo-controlled, phase 3 trial. *Lancet.* 2023;401(10373):122–134.
- [38] Dhaun N, Webb DJ. Endothelins in cardiovascular biology and therapeutics. *Nat Rev Cardiol.* 2019;16(8):491–502.
- [39] Padmanabhan S, Joe B. Towards precision medicine for hypertension: a review of genomic, epigenomic, and microbiomic influences on blood pressure. *Can J Cardiol.* 2017;33(5):576–585.
- [40] Wang L, Pedersen BS, Layer RM, et al. Predicting hypertension treatment outcomes using machine learning. *Hypertension.* 2021;77(5):1401–1410.