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Abstract:
Fibrosis is a pathological state characterized by excessive deposition of the extracellular matrix 
components leading to impaired tissue function in the affected organ. It results in scarring of the 
affected tissue akin to an over‑healing wound as a consequence of chronic inflammation and repair 
in response to injury. Persistent trauma of susceptible oral mucosa due to habitual chewing of betel 
quid resulting in zealous healing of the mucosal tissue is one plausible explanation for the onset 
of oral submucous fibrosis (OSF). The irreversibility and resistance of collagen to degradation and 
its high potential to undergo malignant change are a major reason for morbidity in OSF. Hence, 
early diagnosis and timely treatment are crucial to prevent the progression of OSF to malignancy. 
This review focuses on the mechanistic insight into the role of collagen cross‑links in advancing 
fibrosis and possible therapeutic targets that bring about a reversal of fibrosis. These options may 
be beneficial if attempted as a specific therapeutic modality in OSF as is in organ fibrosis. The 
upregulation of lysyl oxidase and lysyl hydroxylase has been shown to exhibit the higher levels of 
the hydroxylysine aldehyde‑derived cross‑links in fibrosis and tumor stroma promoting the tumor 
cell survival, resistance, and invasion. The in silico analysis highlights the potential drugs that may 
target the genes regulating collagen crosslinking.
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Introduction

Fibrosis is associated with a chronic 
inflammatory state as a result of an 

immune response, tissue remodeling, 
and repair mechanisms. The release of 
pro‑fibrotic cytokines and growth factors 
results in the excessive deposition of 
extracellular components.[1] A similar 
mechanism is antecedent in oral submucous 
fibrosis  (OSF), a chronic debilitating 

condition of the oral cavity, oropharynx, 
hypopharynx, and upper two‑thirds of the 
esophagus, characterized by generalized 
submucosal fibrosis, marked rigidity, and 
inability to open the mouth.[2,3] Reportedly, 
7%–13% of OSF has the potential to undergo 
malignant transformation.[4,5] The existing 
evidence suggests that the deregulation 
in collagen remodeling results in OSF.[3] 
Therefore, an increase in collagen synthesis 
in association with decreased collagen 
degradation is one of the plausible causes for 
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the onset of this condition. Many biological pathways and 
molecular mechanisms are implicated in the initiation of 
fibrosis.[6] A wide range of treatment modalities such as 
surgical therapy, drug management, and physiotherapy 
has been attempted with varying degrees of benefit but 
none can halt or reverse the fibrosis completely. The early 
diagnosis and sequentially early treatment of OSF are 
crucial to prevent its progression to malignancy.

Recent studies underscore the significance of a specific 
type of collagen cross‑links that dictates irrevocable 
changes associated with a fibrotic disease.[7,8] The 
therapies largely target the enzymes involved in the 
cross‑linking of collagen as it determines the stability 
of the extracellular matrix  (ECM).[7] Understanding 
the pathophysiology of collagen cross‑link would be 
important specifically target its progression and reverse 
fibrosis to prevent the interference of anti‑fibrotic 
drugs in normal tissue repair, but this literature survey 
brings to light the potential approaches to identify the 
molecular targets to reverse fibrosis in OSF paving the 
way for evidence‑based therapeutic protocols for the 
management of OSF.

Mechanism of Collagen Cross‑Linking

Collagen is composed of three polypeptide alpha 
chains coiled around each other to form a triple helix 
configuration rich in proline and glycine. Each of the 
three α‑chains within the molecule forms an extended 
left‑handed helix with 18 amino acids per turn. Glycine 
is found at every third position of the polypeptide 
chain and forms the part of the repeating sequence 
Gly‑X‑Y, where X and Y can be any amino acid but 
are usually occupied by proline and hydroxyproline 
respectively.[9] Thus, all types of collagen have this basic 
structure forming triple helix of three polypeptide chains; 
however, their size, function, and tissue distribution vary 
considerably.[10]

An understanding of collagen cross‑linking is important 
as it determines the physical and mechanical properties 
and stability of the ECM.[11] The cross‑linking of 
the fibril‑forming collagens, type  I, II, III, V, XI, 
XXIV, and XXVII involves the posttranslational 
modifications of the procollagen molecules.[12] The 
collagen cross‑linking involves two pathways, one based 
on Allysine, the lysine‑derived aldehyde  (Lysald), and 
the other, Hydroxyallysine, the hydroxylysine aldehyde 
derived (Hylald).[11]

The initial step involves the oxidative deamination of 
lysine and hydroxylysine residues into aldehydes at 
the terminal sequence of the collagen or the telopeptide 
by either of the family of five lysyl oxidases (LOX and 
LOX‑like  [LOXL] 1‑4), the copper metalloenzymes.[7] 

Further Lysald and Hylald undergo intramolecular and 
intermolecular condensation with lysine, hydroxylysine, 
or histidine in the triple helix to form difunctional, 
trifunctional, or tetrafunctional cross‑links.[1,11,12] In the 
allysine (Lysald) pathway, the Lysald in the telopeptides of 
the collagen molecule forms an intramolecular cross‑link, 
aldol condensation product that matures as dehydro-
histidinohydroxymerodesmosine  (deH-HHMD). 
Lysald also undergoes intermolecular condensation 
to form histidinohydroxylysinonorleucine  (HHL) 
[Figure  1a and b].[13] In the hydroxyallysine  (Hylald) 
pathway, the Hylald in the telopeptide undergoes 
intermolecular condensation to form intermediate 
divalent cross‑link, dehydro‑hydroxylysinonorleucine 
and dehydro‑dihydroxylysinonorleucine (deH‑DHLNL), 
which further matures into stable pyridinoline, 
hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP) 
and pyrrole  (d‑PRL  =  deoxypyrrole; PRL  =  pyrrole) 
cross‑links  [Figure  1c, d and e].[13,14] In the skin, the 
telopeptide lysines are not hydroxylated, while in 
bone and cartilage, the telopeptide lysines are highly 
hydroxylated.[14] However, there can be a switch from 
Lysald to Hylald pathways by hydroxylation of lysine at 
the triple helix or the telopeptide by lysyl hydroxylase 
enzyme  (LH) and its three isoforms  (LH1, LH2, and 
LH3)  [Figure  2].[11] The hydroxylated lysine at the 
telopeptide has a different amino acid sequence, to 
that hydroxylated in the triple helix, due to different 
types of LH enzymes involved in hydroxylation.[9] 
The hydroxylation occurs only in the helical sequence 
Gly‑X‑Lys, but not when the helical sequence is 
Gly‑Lys‑Y, where lysine is in X position.[9] The Lysald 
pathway is noticed in the skin and cornea, whereas the 

Figure 1: Mature cross‑links derived from lysald and hylald pathway, (a) 
Dehydro‑histidinohydroxymerodesmosine, (b) Histidinohydroxylysinonorleucine, (c) 

Hydroxylysyl pyridinoline, (d) Lysyl pyridinoline, (e) Pyrrole

dc

ba

e
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Hylald pathway outweighs in bone, cartilage, tendon, 
dentin, and ligaments.[7,11] The Hylald pathway usually 
predominates in the ECM due to the mechanical, thermal, 
and chemical stability of the cross‑links formed.[11,15,16]

Collagen Cross‑Link and Reversibility of 
Fibrosis

Fibrosis is the result of increased deposition of 
collagen accompanied by decreased proteolytic 
degradation of collagen, resulting due to an imbalance 
between the matric metalloproteinases  (MMPs) and 
the tissue inhibitors of matrix metalloproteinases.[3] 
The reversibility of fibrosis may depend on the type of 
cross‑linking of collagen as several fibrotic disorders 
are associated with the increased Hylald‑mediated 
cross‑links.[17,18] The lysyl residue in the telopeptide 
of the collagen in the skin is not hydroxylated; hence, 
HHL and deH‑HHMD are generally found, while the 
hydroxylysyl residues, the pyridinolines  (HP and LP) 
are seen in traces.[13] In skeletal tissue, the lysyl residues 
are hydroxylated forming stable mature cross‑links like 
HP, LP, and pyrrole, required for mechanical stability.[11] 
Reduction in collagen degradation is associated with 
the increased amounts of collagen cross‑links derived 
from both enzymatic[19] and nonenzymatic  (glycation) 
pathways.[20,21]

The accumulation of Hylald‑mediated cross‑links is 
indicative of irreversible collagen deposition and 
decreased susceptibility to proteolytic enzymes. An 
increase of  ~0.1 Schiff‑base cross‑links per collagen 
molecule results in a 2–3‑fold increase in resistance 
to human collagenase compared with uncross‑linked 
collagen.[19] However, it is not just the amount but also 
the type of cross‑link that determines the digestibility of 
the collagen in fibrosis. Furthermore, a switch from the 
Lysald to the Hylald pathway may be a significant event 
in soft‑tissue fibrosis, rather than just the increase in the 
number of cross‑links.[13]

LH, a member of the 2‑oxoglutareate‑dependent 
dioxygenase family[22] may have a significant role 
in inducing the switch in the pathway from Lysald 
to Hylald.[13] Increased hydroxylation of the lysyl at 
the telopeptides by LH contributes to the increase 
in mature cross‑links like HP and LP thus altering 
the ratio of Lysald to Hylald cross‑links.[7,12,16] Besides, 
various pro‑fibrotic cytokines such as transforming 
growth factor‑β  (TGF‑β), interleukin‑4, activin A, 
and tumor necrosis factor‑α upregulate both collagen 
and LH2b and bring about over hydroxylation of 
collagen telopeptides.[23] The Hylald‑mediated cross‑links 
are also less susceptible to degradation by matrix 
metalloproteinase 1(MMP1).[1] These findings suggest 
that the degradability of the collagen accumulated in the 
fibrosis is influenced by the type of mature cross‑links.

Hydroxylysine Aldehyde‑Derived 
Cross‑Links in Self‑Limiting versus 

Progressive Fibrosis

The irreversibility of fibrosis is the result of resistance 
exhibited by Hylald‑mediated cross‑links to proteinases, 
and hence, the quantity of Hylald cross‑links may be 
an important factor in assessing the irreversibility of 
fibrosis. The changes in the topology of cross‑links in 
self‑limiting and progressive forms of fibrosis may 
aid in strengthening these hypotheses.[7] Both the 
self‑limiting fibrosis (wound healing) and progressive 
form of fibrosis initially respond with the deposition 
of Hylald cross‑link deH‑DHLNL. However, eventually, 
the self‑limiting form of fibrosis replaces the Hylald 
cross‑links with Lysald cross‑links, while the hypertrophic 
scars retain a 1:1 ratio of both the types of cross‑links 
and hence are resistant to degradation.[7] Further, in 
fibrotic conditions such as lipodermatosclerosis, there 
is over hydroxylation of lysine residues accompanied 
by increased enzymatic glycosylation of hydroxylysine 
residues. Glycosylation modulates the physicochemical 
properties of the cross‑link by decreasing the susceptibility 
to proteolysis.[24] However, in normal skin, glycosylation 
occurs only to a smaller extent.[25]

Collagen Cross‑Linking in Tumor Stroma

The upregulation of LOX and LOXL2 levels has been 
reported in numerous cancer types[2,26,27] and is known 
to initiate the collagen cross‑linking and stiffening 
of the tumor stroma. LOX portents metastasis by 
increasing the number of collagen cross‑links in the 
tumor stroma.[28] LOX secreted by the tumor cells 
facilitates the collagen crosslinking and thus stiffing 
of the stroma leading to the integrin‑mediated 
formation of focal adhesions that initiate the tumor 
invasion.[28] LOX plays a critical role in establishing a 

Figure 2: Schematic diagram illustrating the lysald and hylald pathways in soft tissue 
and hard tissue, respectively
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microenvironment that is growth‑permissive and is 
capable of promoting metastatic invasion by enhancing 
tumor cell survival and persistence.[29] Similar to 
fibrosis, there is hydroxylation of lysine residues in 
tumor stroma by LH2, eventually leading to the higher 
levels of Hylald cross‑links and lower levels of Lysald 
cross‑links. The change in tumor stroma promotes ECM 
stiffing, tumor invasion, and metastasis.[16] The tumor 
invasion and metastasis enhanced by LH are mediated 
through the upregulation of hypoxia‑inducible 
factor‑1α (HIF‑1α). Both LOX and LH are upregulated 
in response to hypoxia and are the targets of HIF‑1α; 
hence, hypoxia determines the type and quantity of 
collagen cross‑links formation.[28] HIF‑1α promotes 
tumor progression by activating the transcription of 
genes involved in angiogenesis, energy metabolism, 
and adaptive survival.[30] Therefore, the therapeutics 
targeting LOX and LH will abrogate not only 
the progression of fibrosis but also will prevent 
fibrosis‑induced tumor invasion and metastasis.[29]

Upregulation of Lysyl Oxidases in Oral 
Submucous Fibrosis and Oral Squamous 

Cell Carcinoma

A strong correlation of activation of the TGF‑β 
pathway in the pathogenesis of OSF has been reported 
suggesting the role of TGF‑β as a principal regulator of 
fibrosis.[31] Arecoline, the principle constituent of betel 
quid, has been shown to upregulate the TGF‑β and 
Thrombospondin 1 an activator of latent TGF‑β in OSF.[32] 
While TGF‑β promotes the expression of LOX both at 
the mRNA and protein levels in various cell lines.[33] 
The LOX upregulation is also facilitated with increased 
copper levels in OSF as LOX is copper dependent for 
its functional activity.[34] This suggests the excessive 
deposition of highly cross‑linked collagen in OSF may be 
due to the upregulated activity of LOX [Figure 3].[2] The 
upregulation of LOX activity is observed in the fibroblasts 
cultured from OSF patients, which suggests its role in 
the formation of fibrotic bands in OSF.[35]

An upregulated LOX expression pattern is also seen in the 
invasive front of oral squamous cell carcinoma (OSCC) 
arising from OSF, postulating the stromal response.[2] 
Previous studies suggest a multifunctional role of LOX 
at various stages of tumorigenesis.[36] Several single 
nucleotide polymorphism sites have been identified 
in the LOX coding region such as C225G, G409C, 
G473A, C476A, G816A, T924G, and A1135G, where 
G473A shows a higher frequency of polymorphism.[33] 
Recently, Bhanu et al.[37] reported that elevated LOX in 
OSCC patients favored tumor growth and lymph node 
metastasis (LNM). The stiffened matrix due to LOX‑led 
matrix cross‑linking compressed the vasculature 

resulting in tissue hypoxia. The ensuing hypoxia then 
promoted the Rho‑GTPase‑dependent cytoskeletal 
tension leading to aberrant tumor morphogenesis, 
which successively augmented cellular motility 
resulting in metastasis. The higher expression of LOX 
at the invasive tumor front (ITF) resulted in a greater 
propensity to invade deeper structures.[37] Yu et al.[38] 
have reported a stronger LOX expression at the ITF 
when compared to the tumor center. Furthermore, 
LOX expression in basal cells of the nontumor 
epithelium was insignificant when compared to 
ITF. Saito et  al.[39] have shown that LH2, LOX, and 
LOXL2 are considerably upregulated in late‑stage 
OSCC, associated with LNM, and were allied to poor 
prognosis. In these tumors, augmentation of LH was 
particularly related to metastatic propensity as LH 
promoted the more stable Hylald crosslink. Moreover, 
the elevation of the stromal Hylald/Lysald cross‑link 
ratio played a crucial role in the LNM of OSCC. This 
indicates that the quality of collagen crosslinking 
played a more significant role in cancer metastasis.[39]

Targets for Reversibility of Fibrosis

The LOX enzyme has seemingly been the main target to 
inhibit the covalent cross‑linking of collagen as it leads 
to a stable, insoluble ECM due to decreased degradation 
by MMPs.[40] LOX inhibition affects the cross‑linking of 
collagen in liver fibrosis and also brings about widening 
and splitting of fibrotic bands with disorganization 
and disappearance of collagen bundles over time.[40,41] 
Molecules targeting LOX, LOXL1, and LOXL2 have 
proven to be beneficial in  vivo liver fibrosis.[40,42] The 
LOXL2 has been specifically targeted in phase 2 clinical 
trials for the treatment of myelofibrosis,[43] idiopathic 
pulmonary fibrosis,[44] and HIV‑induced liver fibrosis[45] 
using the newly developed humanized monoclonal 
antibody, Simtuzumab.[8] Clinical trials on Simtuzumab 
have also been conducted for the treatment of pancreatic 
adenocarcinoma,[46] nonalcoholic steatohepatitis‑induced 
fibrosis,[47] primary sclerosing cholangitis,[48] and 
colorectal adenocarcinoma.[49] Although Simtuzumab 
has shown anti‑fibrotic properties in rodent fibrotic 
liver models by preventing and reversing fibrosis,[50] the 
results have not been beneficial in human trials both in 
the treatment of fibrosis and carcinoma possibly due to 
its high specificity and failure to inhibit other isoforms 
or the target site [Table 1].[8]

The copper‑binding motif and lysyl tyrosyl quinone 
domain of LOX enzymes are other structural targets 
for its inhibition. The copper chelating agents such as 
D‑penicillamine and tetrathiomolybdate used in in vivo 
experiments have reasonable evidence in potentially 
reversing fibrosis by LOX inhibition.[55,56] Clinical trials 
of D‑penicillamine indicate its role in the reversal of 
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childhood cirrhosis bringing about a significant decrease 
in fibrosis.[51,52] However, D‑penicillamine failed to prevent 
the progressive course of Prednisone‑treated idiopathic 
pulmonary fibrosis.[53] β‑aminopropionitrile (BAPN) is 
another extensively studied LQT domain inhibitor of 
LOX, which forms an irreversible covalent complex.[57] 

BAPN has been widely studied in vivo to reverse liver, 
peritoneal, and myocardial fibrosis.[58,59] Clinical trials 
of BAPN have been conducted on scleroderma patients 
with limited therapeutic effects.[54] The other important 
target known to attenuate irreversible fibrosis is the LH 
enzyme, which is crucial for the formation of the stable 

Figure 3: Schematic diagram illustrating the mechanism of collagen crosslinking in oral submucous fibrosis

Table 1: Drug targets against lysyl oxidase tested in human clinical trials for fibrosis
Studies LOX 

isoform
Drug Class Mechanism Condition Phase

Raghu et al., 201744] LOXL2 Simtuzumab Monoclonal 
antibody

Inhibitor Idiopathic pulmonary fibrosis Phase 2
Verstovsek et al., 2017[43] Thrombocythaemia myelofibrosis Phase 2
Meissner et al., 2016[45] HIV‑induced liver fibrosis Phase 2
Harrison et al., 2018[47] Nonalcoholic steatohepatitis‑induced 

fibrosis
Phase 2

Muir et al., 201948] Primary sclerosing cholangitis Phase 2
Benson et al., 2017[46] Pancreatic adenocarcinoma Phase 2
Hecht et al., 2017[49] Metastatic KRAS mutant colorectal 

adenocarcinoma
Phase 2

Bhusnurmath et al., 1991[51] Copper 
binding 
motif

D‑penicillamine Copper 
chelating 
agents

Inhibitor Childhood cirrhosis‑associated fibrosis
Pradhan et al., 1995[52] Childhood cirrhosis‑associated fibrosis
Selman et al., 1998[53] Idiopathic pulmonary fibrosis
Clements et al., 1999[64] Diffuse systemic sclerosis
Keiser and Sjoerdsma, 1967[54] LTQ domain β‑aminopropionitrile Small molecule Inhibitor Scleroderma ‑
LOX: Lysyl oxidase, LOXL2: Lysyl oxidase‑like 2, LTQ: Lysyl tyrosyl quinone, KRAS Gene: Kirsten Rat Sarcoma Gene
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mature Hylald‑derived cross‑links.[60,61] Minodoxil, an 
FDA‑approved drug for alopecia and hypertension 
reduces LH activity by decreasing the LH1 mRNA 
levels and also limits the total number of hydroxylysines 
available for cross‑link formation.[22,62] In recent years, 
new patents on next‑generation small molecule inhibitors 
against LOXL2 have been released; however, the 
humanized clinical trials in future years will validate 
its potential.[63] These studies further strengthen the 
hypothesis that reversal of fibrosis in OSF may be 
possible targeting the LOX enzyme which may thereby 
inhibit the cross‑linking of collagen.

In‑Silico Analysis

In‑silico analysis was performed for the genes 
encoding various enzymes and growth factors favoring 
Hylald‑mediated collagen cross‑linking and fibrosis. 
Gene‑Interaction Network was constructed for the genes 
LOX, LOXL2, PLOD2 (Procollagen‑lysine, 2‑oxoglutarate 
5‑dioxygenase 2‑encoding LH2) TGF‑β 1, and HIF‑1α 
using GeneMANIA Cytoscape[Figure 4]. Potential drugs 
targeting these genes were predicted using the drug‑gene 
interaction database [Table 2].

Conclusion

The present review provides a mechanistic insight 
that irreversible fibrosis is not merely due to the 
abnormal accumulation of collagen accompanied by 
decreased collagenase degradation but is a result of the 
deposition of stable mature Hylald‑derived cross‑links 
that are resistant to degradation. The upregulation of 
LOX and LH exhibits higher levels of Hylald‑derived 
cross‑links in fibrosis and tumor stroma promoting the 
tumor cell survival, resistance, and invasion. The LOX 
and LH enzymes involved in collagen cross‑linking 
are the potential targets to interfere with the fibrotic 
process and prevent further fibrosis‑induced tumor 
invasion and metastasis. Recent treatment modalities 
for the reversal of fibrosis have focused on targeting 
the collagen cross‑links along with decreased collagen 
synthesis. The nature and the type of cross‑links or 
pathways involved in OSF are yet to be explored. 
A thorough understanding of the collagen cross‑links 
in OSF will determine whether the outcome of the 
disease is reversible or not. Based on these findings, the 
decision for an appropriate therapeutic strategy based 
on evidence is timely and imminent for the treatment 
of OSF. In‑silico analysis revealed the potential 
drug candidates for future research on anti‑fibrotic 

Figure 4: Construction of gene interaction network for the genes LOX, LOXL2, 
PLOD2, TGFB1, and HIF1A. LOX: Lysyl oxidase, LOXL2: LOX like (LOXL) 2, 
PLOD2: Procollagen‑lysine, 2‑oxoglutarate 5‑dioxygenase 2‑ encoding LH2, 
TGFB1: Transforming Growth Factor Beta 1, HIF1A: Hypoxia‑inducible factor 

1‑alpha

Table 2: Potential drug interactions using the drug‑gene interaction database
Gene Drug Interaction type Sources
HIF1A Carvedilol Modulator DrugBank: https://www.dgidb.org/genes/HIF1A#_interactions
HIF1A Nitroglycerin Inhibitor MyCancerGenomeClinicalTrial: https://www.dgidb.org/sources/MyCancerGenomeClinicalTrial
HIF1A Chembl1080759 ‑ TdgClinicaltrial: https://www.dgidb.org/sources/TdgClinicalTrial
HIF1A Deferoxamine ‑ NCI: https://www.cancer.gov/
HIF1A Geldanamycin ‑ NCI: https://www.cancer.gov/
HIF1A Noscapine ‑ TdgClinicalTrial: https://www.dgidb.org/sources/TdgClinicalTrial
HIF1A Epoetin alfa ‑ NCI: https://www.cancer.gov/
HIF1A 2‑methoxyestradiol ‑ DrugBank: https://go.drugbank.com
HIF1A Pimonidazole ‑ NCI: https://www.cancer.gov/
HIF1A Chembl426560 ‑ DrugBank: https://go.drugbank.com
HIF1A Chembl299763 ‑ TdgClinicalTrial: https://www.dgidb.org/sources/TdgClinicalTrial
HIF1A Sunitinib ‑ CGI: https://www.cancergenomeinterpreter.org/home
LOXL2 Simtuzumab Inhibitor ChEMBL: https://www.ebi.ac.uk/chembl/
PLOD2 Ascorbate Cofactor DrugBank: https://go.drugbank.com
HIF1A: Hypoxia‑inducible factor 1‑alpha, LOXL2: Lysyl oxidase‑like 2, PLOD2: Procollagen‑lysine, 2‑oxoglutarate 5‑dioxygenase 2‑encoding LH2
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therapies that may target the genes regulating collagen 
cross‑linking.
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