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Abstract
Breast cancer is known to metastasize in its latter stages of existence. The different angiogenic mechanisms 
and factors that allow for its progression are reviewed in this article. Understanding these mechanisms and 
factors will allow researchers to design drugs to inhibit angiogenic behaviors and control the rate of tumor 
growth.
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INTRODUCTION

The human body has the ability to form new blood vessels 
from existing vessels to ensure proper vascularization 
during embryonic growth, reproductive cycles, and 
proper wound healing. Vascularization from preexisting 
blood vessels is termed angiogenesis. While angiogenesis 
is beneficial in most processes, it is also what maintains 
tumor growth and malignancy. Cancer has the ability 
to grow and metastasize if ample vascularization is 
successfully maintained; hence, hindering cancer growth 
via anti-angiogenic mechanisms has generated research 
interest. To properly understand the anti-angiogenic 
mechanisms, it is imperative that pro‑angiogenic 
mechanisms and growth factors that induce these processes 
be studied in detail.
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Cancer cells need ample blood supply to enable metastatic 
processes including angiogenic factor induction and signaling, 
growth stimulating factor induction and signaling, enabling 
proteolytic enzymes, expressing cell adhesion proteins, and 
exerting resistance to immunogenic molecules.[1] To achieve 
the metastatic behavior, growth factors and other such 
molecules are released in order to induce nondifferentiated 
stromal cells to the site of tumor growth. These cells, also 
known as mesenchymal stem cells (MSCs), enable tumor 
growth by providing tumor cells with the necessary signals. 
MSCs, which are located in the bone marrow and can 
undergo osteogenesis; chondrogenesis; and adipogenesis 
if needed, are shown to increase breast cancer progression 
and metastasis by allowing cell motility via chemokine 
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secretion.[2] Furthermore, MSCs have been shown to 
secrete vascular endothelial growth factor‑A (VEGF‑A) and 
interleukin‑6  (IL), which are potent angiogenic factors in 
breast cancer growth.[3]

ANGIOGENIC MECHANISM

Understanding angiogenic mechanisms and studying the 
different factors which bring about healthy angiogenesis can 
allow researchers to inhibit angiogenic behaviors, which in 
turn can lead to a better awareness of how to induce tumor 
suppression. Through these studies, we can determine the 
role of angiogenesis and its impact on breast cancer tumor 
progression.

Distinguishing between regular angiogenesis and 
tumor‑associated angiogenic processes is imperative for 
effectively treating breast cancer. In humans, regular 
angiogenesis can be defined as the integration of endothelial 
cell precursors that form capillary plexus and later become 
blood vessels. Some processes in which normal angiogenesis 
occurs include embryo nutrition, tissue repair, and 
physiological changes associated with growth. During these 
common processes, there is an intricate balance between 
pro‑ and anti‑angiogenic signals that is rigorously maintained, 
in order for newly formed blood vessels to attain maturity and 
stability in a timely manner.[4] However, in tumor‑associated 
angiogenesis, the balance between these angiogenic factors 
is lost, allowing blood vessels to develop uncontrollably. 
This negative shift leads to changes in normal vasculature 
characteristics including their physical properties.[4,5]

TUMOR VASCULATURE AND ANGIOGENESIS

Tumor vasculature is markedly distinct from normal 
vasculature in that blood vessels that supply tumor tissue 
are irregularly sized and arranged in a disorganized manner, 
where they share characteristics of arterioles, capillaries, and 
venules simultaneously. In normal tissue vessels, blood flow 
and density are controlled by the tissue’s metabolic needs to 
avoid over‑feeding or under‑feeding its cells.[6,7] However, in 
tumor vasculature, sporadic blood flow is observed, leading 
to damaged capillary network systems.[7,8]

Tumors are composed of various cellular components that 
allow for effective angiogenic growth. First, functional 
vasculature contains adipose tissue that is surrounded 
by stromal cells that provide a proper framework for the 
developing tumor’s vascular network. White adipose 
tissue  (WAT) maintains vascular growth and has been 
shown to aid breast cancer development and progression 
in mouse models,[9] while brown adipose tissue  (BAT) 

enables metabolic processes, such as efficient oxygen and 
nutrient transport that aids tumor growth.[10] WAT and BAT 
are both known to be in charge of producing angiogenic 
factors, with the most common ones in relation to breast 
cancer being VEGF A, B, and C; basic fibroblast growth 
factor (bFGF)/FGF‑2; matrix metalloproteinases (MMPs); 
and IL‑8.[10,11] The release of these factors is strictly dependent 
upon the pro‑versus antiangiogenic balance at the adipose 
tissue pad that is in proximity to the tumor tissue.[10]

Another element responsible for tumor vasculature formation 
and angiogenesis is vascular endothelial cells, which are 
recruited by growth factors such as VEGF and bFGF/FGF‑2 
to propagate, migrate and form tube‑like structures.[12,13] 
Endothelial precursor cells migrate from the bone marrow 
into the bloodstream, where they eventually settle into a niche 
and begin forming new blood vessels, with the help of VEGF, 
FGF, and platelet‑derived growth factor.[7,14‑16] It is these 
newly formed blood vessels that provide vascular networks 
for the burgeoning tumor to grow, eliminate waste from its 
rapidly dividing cells, and allow metastasis.[17]

The earliest stage of tumor angiogenesis occurs when VEGFs 
cause vasodilation of existing capillaries that enables diffused 
plasma proteins to lay down a matrix for endothelial cells to 
migrate to and loosen the smooth pericyte covering of the 
blood vessel. This process is aided by the involvement of 
the tyrosine kinase receptor 2 (TIE2) and one of its ligands, 
angiopoietin‑2  (ANG‑2).[18] The vascular membrane and 
matrix are then degraded in order for endothelial cells to 
gain entrance into the lumenal space and migrate toward the 
pro‑angiogenic stimuli. In normal angiogenic endothelial 
migration, pericyte processes decrease cell proliferation and 
decrease VEGF dependence.[13] This behavior is unseen in 
tumor tissue angiogenesis, where the pericyte influence 
on endothelial proliferation is curtailed or sometimes 
nonexistent. As is the case of VEGF‑A inhibition by blood 
vessels, other cytokines such as ANG‑1 and placental growth 
factor (PlGF) are known to send growth signals to endothelial 
cells.[4,7,19,20] In addition, VEGF can interact with the tumor via 
different pathways such as PI3K/AKT and mitogen‑activated 
protein kinase (MAPK),[21,22] as well as express an E‑cadherin 
repressor that is involved in breast cancer cell invasiveness.[23]

ANGIOGENIC FACTORS AND THEIR ROLES 
IN BREAST CANCER PROGRESSION AND 
TREATMENT

Tumor cells establish angiogenesis by secreting various 
angiogenic factors. The most studied and understood of 
these factors are VEGF and IL‑8. VEGF and IL‑8 secretion 
are especially apparent in breast cancer angiogenesis,[19,22,24‑28] 
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in addition to bFGF/FGF‑2 and MMPs. Current research 
shows that tumor angiogenesis requires a combination of 
the aforementioned factors, if not all of them, in order for 
a tumor to efficiently undergo development and potential 
metastasis.[4,29,30]

Vascular endothelial growth factors
While VEGFs are most known for their role in endothelial 
cell proliferation and migration, their expression has been 
observed in macrophages; epidermal cells; thrombocytes; 
and tumor cells, with involvement in normal physiological 
processes such as development; osteogenesis; and wound 
healing, in addition to numerous pathologies.[31‑34] Five 
mammalian VEGF ligands exist, VEGF‑A/B/C/D and 
PlGF, which can interact with three different VEGF 
receptors  (VEGFR), VEGFR‑1/2/3.[32,35‑37] Of the VEGF 
ligand‑receptor interactions, the ones most involved in breast 
cancer development, progression, and metastasis are VEGF‑A 
and VEGFR‑1 or 2.[35‑42]

In tumor angiogenesis, each VEGF family member plays 
some role, either directly or indirectly, to enhance pathological 
progression. As previously stated, the most expressed VEGF 
member, VEGF‑A, stimulates angiogenesis most potently via its 
interaction with VEGFR‑2,[32,33,39‑41,43] even though it interacts 
with a higher affinity with VEGFR‑1. VEGFR‑1 can act as a 
decoy receptor that can control VEGF‑A interaction with, and 
activation of, VEGFR‑2, and ultimately impact angiogenesis 
and its involvement in tumor development.[32,33,37,43]

VEGF‑B, which is highly expressed in the brain and skeletal 
system, as well as breast tumors, promotes angiogenesis 
indirectly by binding VEGFR‑1 on endothelial cells in 
order to initiate plasminogen activation, and eventually, 
metastasis.[17,33‑35,42,44‑46] VEGF‑C promotes angiogenesis and 
lymphangiogenesis via still unknown mechanisms through 
its binding with VEGFR‑2 and VEGFR‑3, respectively, 
while VEGF‑D is known to ensure lymphatic vessel 
growth.[17,33‑35,42] High overall VEGF expression levels are 
associated with breast cancer aggressiveness and metastasis, 
as well as poor treatment responsiveness.[36,47]

Finally, PlGF, which only binds and activates VEGFR‑1, is 
primarily known for its role in embryogenesis; however, 
recent studies have demonstrated its involvement in cancer 
development via its pro‑inflammatory, pro‑angiogenic actions 
that aid metastasis.[35,48,49]

Interleukins
ILs are a class of cytokines secreted by cells in response to 
various stimuli, in order to initiate the immune response 
to a pathological condition. IL‑8, a member of the IL class, 

is produced by a variety of cells, including endothelial 
and tumor cells, in order to activate its receptors, CXCR1 
and 2, and potentiate signaling pathways that can relate 
to cell migration and mobilization and angiogenesis, 
which are important for breast cancer progression and 
metastasis.[22,26‑28,50,51] Secretion of IL‑8 is elicited in response 
to the presence of several chemokines and growth factors, 
including VEGF and MMPs, to facilitate the aforementioned 
physiological processes.[4,28] Studies have shown that tumors, 
including breast carcinomas, expressing high levels of IL‑8 are 
found to be more aggressive and invasive, and less responsive 
to traditional treatment protocols, making it a target to future 
antiangiogenic therapies.[4,22,26,27,51,52]

Fibroblast growth factors
In addition to VEGF, FGFs are also known to be a family 
of potent angiogenic motivators with an association with 
breast cancer risk.[53] While FGF‑1 is known as the acidic 
polypeptide, FGF‑2 is the bFGF polypeptide and has been 
shown to aid in proliferation and differentiation of endothelial 
cells.[54,55]

The bFGF/FGF‑2 protein is known to exist in five 
isoforms as a result of multiple polyadenylation sites and 
altered mRNA translation, where they are categorized 
into low or high molecular weight forms.[56‑58] The 18 kDa 
bFGF/FGF‑2, which is the most common FGF, interacts 
with all four high‑affinity FGF‑receptors  (FGFRs), but 
specifically FGFR‑1 and FGFR‑2‑IIIC, with the help of 
heparan sulfate proteoglycans that are located on the cell 
surface.[59‑62] bFGF/FGF‑2 activation is thought to occur 
following the degradation of heparan sulfate within the 
extracellular matrix  (ECM), which leads to sprouting 
of new blood vessels.[63,64] Molecules in the extracellular 
environment, such as heparan sulfate proteoglycans; integrin 
receptors; ECM proteins; cytokines; and serum components, 
can alter FGF‑2/FGFR‑2 interactions, which can enhance 
tumor progression and metastasis through regulation of 
angiogenesis, although less so than the aforementioned 
growth factors.[55,59,61,62,65]

Matrix metalloproteinases
Finally, a class of proteolytic enzymes called MMPs, is 
involved in angiogenesis through their ability to remodel the 
ECM. Some of the initial steps of angiogenic blood vessel 
formation, which include destabilization of the established 
blood vessel wall and degradation of matrix proteins in 
order for mobilization and migration of endothelial cells, are 
performed by MMPs.[66‑75] MMPs, which are divided into 
at least five categories based on the matrix substrates they 
destabilize‑collagenases (MMP‑1, MMP‑8, and MMP‑13), 
gelatinases (MMP‑2 and MMP‑9), stromelysins (MMP‑3, 
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MMP‑10, and MMP‑11), matrilysins  (MMP‑7), and 
elastase (MMP‑12) are initially secreted as inactive zymogens 
and then activated extracellularly by other proteolytic 
enzymes.[66‑68,71,73,75] As a result, MMPs are currently 
being studied for their role in breast cancer invasion and 
metastasis.[67,71‑73,76‑78] MMPs are typically regulated by a 
group of natural inhibitors, known as tissue inhibitors 
of metalloproteinases, which are being investigated for 
their contribution to cancer development and as potential 
treatments.[4,67,73,75,79]

EXAMPLES OF ANGIOGENIC INHIBITORS 
AND THEIR MODES OF ACTION

Numerous antiangiogenic compounds exist in various phases 
of development to clinical practice, both endogenous and 
exogenous; however, this section will examine a select few of the 
most commonly studied inhibitors including interferons‑α/β, 
endostatin, angiostatin, thrombospondin (TSP), and decorin.

Interferons‑α/β
Interferons‑α/β are types of class  I interferons that 
regulate the immune system and control cell growth and 
differentiation, two important aspects of tumor formation. 
During the last two decades, research on interferons‑α/β 
has shown that they have the ability to impair tumor 
angiogenesis via downregulation of mRNA expression of 
the growth factor bFGF/FGF‑2 and reduced expression of 
the MMP‑2 gene,[80,81] making their development as potential 
antiangiogenic therapies crucial.[82]

Endostatin
Endostatin is a naturally occurring fragment of collagen XVIII 
generated by tumor cell proteases that inhibits endothelial 
cell proliferation and migration.[83‑86] Endostatin is thought 
to have several possible mechanisms of action in relation to 
the inhibition of tumor angiogenesis including prevention of 
tumor necrosis factor alpha (TNFα) activation of the JNK 
signaling pathway,[87] antagonism of the cell surface receptors 
av‑ and a5‑integrins,[86] and inhibition of cell cycle progression 
of endothelial cells.[85] The JNK signaling pathways, c‑Jun 
NH2‑terminal kinase, are activated by different types of 
cellular stresses and signals and utilizes TNFα to elicit cell 
death.[87]

As previously stated, endostatin inhibits TNF activation 
of JNK and pro‑angiogenic genes dependent on it.[87] In 
reference to the cell cycle, endostatin causes G1 arrest by 
decreasing the phosphorylated state of retinoblastoma genes 
and cyclin D1 mRNA and protein expression.[88] While the 
protein itself has not shown any direct cytotoxicity in tumor 
cells, gene transfer has been hypothesized as a means of 

delivery in order to induce apoptosis and ultimately tumor 
regression/inhibition,[82,85] which has proven successful in a 
breast cancer study that exhibited a 90% reduction in tumor 
growth compared to the untreated control.[89]

Angiostatin
As with endostatin, angiostatin is a proteolytic fragment 
of a larger protein, specifically, plasminogen, that acts as a 
metastatic suppressor by blocking the formation of blood 
vessels and is thought to impair tumor progression.[82,85,90‑92] 
One mechanism by which angiostatin, whose receptors 
include adenosine triphosphate (ATP) synthase and integrin 
αvβ3, is hypothesized to inhibit tumor growth is via the 
binding of ATP synthase at its catalytic subunit.[93] As a result, 
ATP synthesis is terminated, leading to inhibition of the cells’ 
uncontrolled proliferation.[92,93]

In addition, prolonged angiostatin treatment has also 
been shown to inhibit the activation of the MAPK, 
extracellular‑signal‑regulated kinases‑1 (ERK1) and ERK2, 
by FGF‑2 or VEGF in human skin vascular cells.[94] The 
MAPK/ERK pathway functions in cellular proliferation, 
differentiation, and even survival following phosphorylation 
of specific threonine and tyrosine residues.[94] ERKs regulate 
growth factor‑responsive targets in the cytosol and are also 
able to translocate to the nucleus, where they phosphorylate a 
number of transcription factors that regulate gene expression. 
The role of FGF‑2, which is to stimulate phosphorylation 
of ERK‑1 and 2, is blocked by angiostatin;[89,94] this leads to a 
loss of integrity of the cell cycle and eventually impairment 
of angiogenesis.

Finally, other potential mechanisms of action by which 
angiostatin inhibits angiogenesis are through suppression of 
VEGF activities and arrest of the cell cycle at the G2‑to‑M 
transition.[89] As with endostatin, angiostatin has been 
considered as an antiangiogenic gene therapy due to issues 
with delivery and treatment with its protein form.[82,85,95]

Thrombospondin
TSPs are a family of five matricellular glycoproteins involved 
in cell proliferation, migration, and survival through their 
interactions with numerous cell surface and ECM proteins, 
indicating their importance in angiogenesis. Significant 
research shows that TSPs, which are identified in breast 
cancer, can act as potent endogenous antiangiogenic factors 
that inhibit the aforementioned cellular processes within 
endothelial cells, leading to tumor suppression.[96‑101]

The most studied of the TSPs is TSP‑1, which binds αvβ3 
integrins, heparin sulfate proteoglycans, transforming 
growth factor‑β  (TGF‑β), and other ECM proteins and 
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proteases, and inversely regulates proliferation and migration 
of vascular smooth muscle and endothelial cells.[100‑102] 
Through its various peptide binding sequences, TSP‑1 
acts as a tumor suppressor by inhibiting bFGF/FGF‑2 and 
VEGF through binding heparin sulfate receptors on the cell 
surface and ECM or inhibiting MMP‑9 activation, inhibiting 
angiogenesis via its interaction with the RGD sequence on 
αvβ3 integrins, inhibiting tumor growth through its binding 
and activation of TGF‑β, and inducing apoptosis by inhibiting 
MMP‑9 activation.[100,102‑109] TSP‑2, which is structurally 
similar to TSP‑1, demonstrates similar antiangiogenic, 
antitumor capabilities making it another option for drug 
development.[110,111]

Decorin
Decorin is a member of a family of small leucine‑rich 
proteoglycans involved in various cellular processes including 
matrix organization, formation/“decoration” of collagen 
fibrils, wound healing, and maintenance of cell proliferation 
through its interaction with other ECM proteins and growth 
factors.[112‑122] Decorin, which is secreted by mesenchymal 
cells; connective tissue cells; and tumor stromal cells, inhibits 
tumor angiogenesis; progression; and metastasis through 
its interactions with such receptors and proteins as EGFRs; 
TGF‑β; VEGF and VEGFR‑2; and bFGF/FGF‑2 making it 
a potential anticancer treatment.[116,117,119,121‑156]

While one of decorin’s mechanisms of angiogenic and 
growth inhibition may involve the potential impeding of 
epidermal growth factor receptors  (EGFRs) interaction 
with EGF due to an overlap in binding sites,[145] it is 
known that its interaction with EGFR leads to MAPK 
activation, utilization of intracellular calcium, upregulation 
of the cell cycle cyclin‑dependent kinase inhibitor, p21, 
and a drastic reduction in EGFR activity, in addition 
to internalization and lysosomal degradation of the 
receptor.[116,117,119,121,122,132,134,135,140‑142,144,146,148,157] In the case 
of breast cancer, which exhibits high EGFR expression, 
specifically ErbB2 (human epidermal growth factor 
receptor 2), decorin inhibits the receptor’s synthesis and 
activity, while reducing cell growth and migration, leading 
to a reduction in tumor size at the primary site, as well as 
the development and expansion of metastases within the 
lungs.[117,119,121,122,141,144,151,154]

TGF‑β is a growth factor secreted by most cells, including 
healthy and cancerous breast tissue that is multifaceted 
in its involvement in all aspects of cell survival and death. 
Depending on the stage of breast cancer development 
and progression that the growth factor is present, it can 
act as either a pro‑  or anti‑oncogenic protein. In the 
case of late stage, aggressive, metastatic breast cancers, 

TGF‑β is highly oncogenic making it a frequent target for 
therapies. In the presence of decorin binding, TGF‑β, and 
subsequently, its receptor’s activity is impaired leading to 
tumor suppression.[119,121,122,125,127,128,130,137] Decorin is also 
known to inhibit tumor angiogenesis and growth through 
its negative interactions with VEGF and its receptor and 
bFGF/FGF‑2 by downregulating VEGF and bFGF/FGF‑2 
expression and activities, and by binding VEGFR‑2 to 
impair its interaction with, and ultimate activation by, 
VEGF.[118,121,122,136,149,155,156]

CLINICAL TRIALS FOR ANTIANGIOGENIC 
TREATMENTS IN BREAST CANCER

Numerous therapies to combat angiogenesis in breast cancer 
have passed from clinical trials to use with varying levels 
of success; however, they can all be divided into different 
categories based on what aspect of tumor angiogenesis 
they affect, including those that inhibit pro‑angiogenic 
growth factors and/or their receptors  (such as VEGF‑A 
and VEGFR‑1 and ‑2), ECM proteins (such as integrins), 
endothelial cell quantitative and spatial expansion/spreading, 
and proteases (such as MMPs).[17,24,158‑160] A few examples of 
drugs that have undergone clinical investigation, and their 
mechanisms of action are described here.

Bevacizumab
Bevacizumab, also called Avastin, is a humanized monoclonal 
antibody that binds VEGF‑A and impairs its activity and 
interactions with VEGFR‑1 and ‑2, leading to a reduction 
in tumor growth.[33,47,158,159,161‑165] As the first US Food and 
Drug Administration  (FDA) approved antiangiogenic, 
it was utilized as a combination treatment with other 
chemotherapeutics for metastatic colon cancer,[166] with 
its single and combinatorial use expanded to nonsmall cell 
lung cancer, renal cell carcinoma, pancreatic cancer, ovarian 
cancer, advanced kidney cancer, glioma, leukemia, and 
breast cancer.[19,47,158‑160,167‑187] In a phase II study testing only 
bevacizumab in 75  patients with metastatic breast cancer 
patients that had received treatment in the past, only 9.3% 
responded effectively with four being progression‑free 
beyond a year.[158,168] While treatment with bevacizumab 
alone or in combination with traditional chemotherapy was 
well‑tolerated, it produced a range of side effects including 
bleeding and blood clots, abnormal excreted protein levels, 
and high blood pressure.[158,167] Since completion of the 
phase II Cobleigh study  (2003), additional phase II and 
phase III trials utilizing bevacizumab in combination with 
capecitabine demonstrated improvements in response rates, 
but no noticeable changes in progression‑free or overall 
survivals rates, while its use with taxanes; cyclophosphamide; 
doxorubicin; and gemcitabine resulted in extended 
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progression‑free survival lengths.[154,160,187‑195] While a majority 
of these studies were performed in later stage, metastatic 
breast cancer patients, other trials completed in individuals 
diagnosed with early breast cancer also exhibited increased 
response rates when compared to those receiving standard 
care protocols.[160,196,197] As November 2011, bevacizumab’s 
FDA approval for use as a metastatic breast cancer therapy 
was removed due to lack of significant improvements in 
response and survival; however, it continues to be investigated 
in various breast cancer treatment trials and prescribed in 
clinical practice.[198]

Cilengitide
Cilengitide is classified as an antiangiogenic drug due to its 
ability to inhibit the cellular adhesion receptors αvβ3/αvβ5 
integrins.[107,164,199,200] Cilengitide has shown effectiveness in 
preclinical studies through its induction of cell detachment 
and reduced proliferation in a panel of four breast cancer 
cell lines, as well as enhanced treatment effectiveness and 
cell death and inhibited bone metastasis that was furthered 
when combined with radiotherapy when utilized in breast 
cancer xenografts.[200‑202] Cilengitide has been investigated in 
glioblastoma, nonsmall cell lung cancer, and prostate cancer 
with noted tumor reduction and negligible toxicity; however, 
overall survival was not significantly increased compared to 
currently‑available treatments.[203‑206] Currently, a phase I trial is 
underway to evaluate cilengitide as a combination therapy with 
paclitaxel in patients with advanced solid tumors, particularly 
those diagnosed with high‑grade, aggressive breast cancers.[207]

Vitaxin
Vitaxin, also referred to as Abegrin, is a humanized 
monoclonal antibody that affects the vitronectin receptor, 
αvβ3 integrin, leading to impaired endothelial cell expansion 
and tumor growth.[158,208,209] Previous clinical studies have 
been performed with Vitaxin, but showed little results, 
leading to its modification to Abegrin.[209] In a small scale, 
phase II study investigating Abegrin’s effects in various 
metastatic cancer patients that had received prior treatment, 
including one individual breast cancer, the drug was well 
tolerated but did not produce clinically relevant results, 
possibly due to its specificity for αvβ3.

[208]

CONCLUSIONS AND FUTURE 
PROSPECTIVE

Despite the fact that angiogenesis is a naturally occurring 
process that is necessary for activities ranging from 
embryonic development to wound healing, it also possesses 
detrimental aspects that are involved in disease occurrence 
and progression. When the angiogenic balance is disturbed 
and various signaling pathways are exploited, uncontrolled 

cell growth occurs, which can result in the propagation 
of cancer. Through the use of natural inhibitors such as 
endostatin, angiostatin, TSP, and decorin, the likelihood of 
tumor progression and metastasis are reduced, though not 
eliminated. Although most antiangiogenics have proven 
poorly effective against breast cancer, their development 
and investigation in clinical trials have provided a basis for 
identifying drug targets that can impair tumor angiogenesis, 
and potentially tumor growth and migration. While more 
effective treatments to combat tumor angiogenesis appear to 
be further in the future, continued investigation is necessary 
to establish potential new therapies, as well as to determine 
the possibility to repurpose old drugs.
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