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Abstract
Historically, cancer research has focused on identifying mutations or amplification of genes within the 
tumor, which informed the development of targeted therapies against affected pathways. This work often 
considers tumor cells in isolation; however, it is becoming increasingly apparent that the microenvironment 
surrounding tumor cells strongly influences tumor onset and progression. This is the so‑called “seed and soil” 
hypothesis wherein the seed (cancer cell) is fed and molded by the metabolites, growth factors, modifications 
of the extracellular matrix or angiogenic factors provided by the soil (or stroma). Currently, 65% of the US 
population is obese or overweight; similarly staggering figures are reported in US children and globally. Obesity 
mediates and can exacerbate, both normal and tumor microenvironment dysfunction. Many obesity‑associated 
endocrine, metabolic and inflammatory mediators are suspected to play a role in oncogenesis by modifying 
systemic nutrient metabolism and the nutrient substrates available locally in the stroma. It is vitally important 
to understand the biological processes linking obesity and cancer to develop better intervention strategies 
aimed at curbing the carcinogenic events associated with obesity. In this review, obesity‑driven changes in both 
the normal and tumor microenvironment, alterations in metabolism, and release of signaling molecules such 
as endocrine, growth, and inflammatory mediators will be highlighted. In addition, we will discuss the effects 
of the timing of obesity onset or particular “windows of susceptibility,” with a focus on breast cancer etiology.
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INTRODUCTION

Cancer is the second leading cause of death in the developed 
world, surpassed only by heart disease[1] and obesity is 
increasingly recognized as an oncogenic factor.[2] The World 
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Health Organization estimates that 500 million adults and 
almost 43 million children under the age of five are obese 
worldwide.[3] In the US, the incidence of obesity may 
be plateauing, but the prevalence of obesity  (body mass 
index  [BMI] >30) remains at 30%. Individuals who are 
overweight  (BMI  >  25 and  <  30) represent a staggering 
65% of the population.[4] Childhood obesity is of particular 
concern[5] as healthcare professionals are increasingly 
treating children for chronic diseases and endocrine 
disorders such as early menarche that are linked to cancer 
predisposition.[6,7] In 2003, the results of large US and UK 
cohort studies first reported the striking association between 
obesity and cancer.[2,8‑10] Since then, it is now estimated 
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that being overweight or obese contributes to 20% of US 
cancer deaths by influencing cancer onset.[11] For a review of 
common cancers associated with an increased BMI refer to.[12]

This review will discuss obesity‑mediated mechanisms 
leading to tumor progression. Specific foods or nutrients 
such as saturated fats, processed foods, or charred meat that 
can act as carcinogens have been reviewed elsewhere and are 
beyond the scope of this review.[7,13‑17] Metabolic alterations 
associated with obesity have been reviewed in detail by 
Johnson et al.[18] and will be briefly discussed herein. It is now 
widely accepted that obesity may promote cancer through 
several mechanisms and the effects of obesity on cancer risk 
is the primary topic covered in this review, with a focus on 
a specific breast cancer (BC) subtype called basal‑like breast 
cancer (BBC).

OBESITY, BREAST CANCER AND 
WINDOWS OF SUSCEPTIBILITY

BC represents the highest incidence of cancers affecting 
women. It is the second most fatal cancer type.[19,20] It is 
likely that it is likely that throughout the lifespan particular 
“windows of susceptibility” exist during which during which 
obesity plays a disproportionately greater role in promoting 
BC onset. Obesity, which disturbs tissue homeostasis, is 
one of the few modifiable BC risk factors; therefore, in 
order to develop more effective therapeutic strategies aimed 
at combating obesity‑associated BC, it is critical to first 
understand the molecular mechanisms orchestrating the effects 
of obesity on BC. Our work has focused on specific periods 
of heightened susceptibility to BC due to the presence of an 
obese environment, such as the post‑partum period.[21] In 
addition, we have studied the normal breast microenvironment 
in both preclinical and human models to understand the role 
that obesity plays in cell‑cell crosstalk and to delineate the 
underlying factors contributing to increased BC risk.[21‑23]

With the advent of high‑throughput gene sequencing and 
expression analysis and the construction of The Cancer 
Genome Atlas, the classification of tumor subtypes with 
defined risks and clinical outcomes has opened the door to 
consider subtype‑specific mechanisms.[24,25] Considering that 
BC is a heterogeneous disease with many identified intrinsic 
subtypes (including luminal A and B, basal‑like, claudin‑low, 
and other subtypes),[26] it is not surprising that intricate 
relationships exist between modifiable and non‑modifiable 
risk factors in each subtype. Considering BCs overall, the 
relationship between obesity and risk is complex having no 
(or even protective) effects on premenopausal BC risk, yet 
obesity is associated with an increased risk of postmenopausal 
BC.[27] With the ability to stratify BCs according to subtype, 

epidemiologic studies have demonstrated that obesity is 
strongly associated with an increased risk of BBC in both 
pre‑ and postmenopausal women,[27] whereas luminal BCs 
are associated with obesity solely during the postmenopausal 
period. BBCs are aggressive cancers, typically estrogen 
receptor  (ER), progesterone receptor  (PR) and human 
epidermal growth factor receptor‑2 negative  (so‑called 
“triple‑negative BCs”) and as such, targeted therapies 
for BBCs are currently unavailable.[28] These tumors are 
highly proliferative, patients have poor overall survival and 
are diagnosed predominantly in young African‑American 
women, particularly obese women.[4,26,27] Millikan et  al. 
estimated that up to 68% of BBCs could be prevented by 
encouraging more women to breastfeed and by reducing 
obesity[26,27] suggesting that this aggressive subtype of BC may 
be preventable through lifestyle modifications. Determining 
mechanistic risk factors could help address the need to reduce 
BBC risk as well as observed health disparities. Studies in 
preclinical models of other BC subtypes demonstrate that 
diet‑induced obesity is associated with shortened mammary 
tumor latency[29,30] and our findings demonstrate that this is 
also true for obesity‑linked BBC.[21]

Mechanisms of obesity related cancer
Growth factors and hormones
The mechanism(s) by which obesity induces carcinogenesis 
is likely to vary by cancer site, although several obesity‑related 
systemic alterations may contribute to cancer onset globally 
through nutrient sensitive signaling cascades, such as 
the insulin/insulin‑like growth factor  (IGF‑1) and PI3K/
Akt/mammalian target of rapamycin  (mTOR) pathways 
thus driving cell proliferation, angiogenesis, glycolysis 
and anti‑apoptosis pathways leading to tumorigenesis 
and increased metastasis[31‑35]  [Figure  1]. The connection 
between hyperinsulinemia and oncogenesis, known 
as the insulin‑cancer hypothesis, was first proposed in 
the early 1990s.[36,37] Obesity leads to insulin resistance, 
hyperinsulinemia and greater bioavailability of IGF‑1.[12,18,38] 
IGF‑1 exhibits effects similar to insulin because of their 
shared downstream signaling pathways and studies suggest 
that IGF‑1 may be the more relevant obesity‑mediated growth 
factor.[39] In the Women’s Health Initiative observational 
study, BC incidence was increased 2.4‑fold in women in the 
highest quartile of fasting insulin concentrations compared 
with women in the lowest quartile. Ultimately, insulin/IGF‑1 
signaling may explain the relationship between BMI and BC 
risk, independent of estradiol levels.[40] Furthermore, the 
alterations in IGF‑1 signaling and inflammation observed 
in animals that over‑express insulin‑like growth factor 
receptor  (IGF‑1R) result in the formation of mammary 
tumors that share features with BBC.[41] Conversely, genetic 
ablation of IGF‑1R delays tumor onset as does treatment with 
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an IGF‑1R inhibitor.[42] Three classes of inhibitors targeting 
the IGF‑1R pathway are currently in clinical trials including 
anti‑receptor antibodies, anti‑ligand antibodies and small 
molecule tyrosine kinase inhibitors.[38] First, anti‑receptor 
antibodies are specific to IGF‑1R and spare insulin 
receptors.[43] Their mechanism of action is through inhibition 
of the binding of ligands to the IGF‑1R.[43] However, these 
antibodies are associated with severe side‑effects including 
hyperglycemia and hyperinsulinemia.[43] Although, phase II 
clinical trials with these antibodies showed promise, early 
phase III clinical trials have demonstrated lack of efficacy and 
metabolic toxicity  (hyperglycemia).[43] Second, anti‑ligand 
antibodies are specific to IGF‑1 and IGF‑2 and do not cross 
react with insulin.[44] However, the concern regarding high 
levels of free insulin‑like growth factor binding protein that 
normally bind to the IGFs is still being addressed. Third, 
tyrosine kinase inhibitors were developed to be specific 
to IGF‑1R but tend to inhibit all members of the pathway 
including insulin.[45] Interestingly, these agents are proving to 
be safer than previously expected and may be of therapeutic 
advantage due to their broader range of inhibition.[45] In sum, 
although there was a strong rationale for targeting the IGF‑1R 
pathway based on preclinical studies, clinical trials have so 
far not been proven to be useful in the treatment of cancer.

Nutrient sensitive pathways, metabolism and cancer
There is great interest in controlling tumor growth through 
metabolic reprogramming.[46,47] Glucose metabolism and 
growth control are tightly linked in proliferating cells and 
involve signaling pathways including the PI3K/Akt/mTOR 
pathway[48] [Figure 1]. The “Warburg effect” describes cells 
exhibiting a metabolic shift toward glycolysis, supporting 

increased production of biomass, especially amino acids 
and nucleic acids.[49] We found that BC subtypes could be 
characterized as more or less aggressive using metabolomics 
analysis, which measure Warburg‑like changes within 
tumors.[50] Furthermore, fibroblasts isolated from patient 
BBC tumors and co‑cultured with BBC‑like epithelial 
cells drove glucose transporter‑1 expression and glucose 
metabolism in BBC‑like epithelial cells, which correlated 
with metabolic phenotypes in patient samples,[50] thus 
denoting integrated cross‑talk between the stromal and 
epithelial phenotypes on tumor metabolism. In experimental 
animal models, diet‑induced obesity leads to activation of Akt 
and mTOR in a variety of epithelial tissues.[31,32] Conversely, 
calorie restriction represses signaling through the PI3K/Akt/
mTOR pathway.[31,32]

Recent evidence suggests that metformin, an anti‑diabetic 
biguanide medication, lowers cancer risk and reduces 
cancer incidence and deaths among diabetic patients, hence 
clinical trials are underway, some focusing on BC,[51‑54] 
and reviewed in.[38] Metformin inhibits complex  1 of the 
mitochondrial electron transport chain and therefore, oxidative 
phosphorylation (i.e., adenosine  triphosphate production). 
The subsequent low energy state drives 5’ Adenosine 
monophosphate  (AMP)‑activated protein kinase  (AMPK) 
activity  [Figure  1], a master metabolic regulator that 
modulates multiple anabolic and proliferation pathways, 
including the PI3K/Akt/mTOR pathway and glucose 
uptake.[47,55,56] Cancer incidence in diabetic patients on 
metformin was 7.3% compared with 11.6% in non‑metformin 
users.[53] However, it remains unclear whether metformin’s 

Figure 1: Obesity mediated alterations in nutrient sensitive pathways. Overnutrition in obesity leads to an increase in insulin and 
glucose. Insulin, insulin‑like growth factor‑1 and downstream pathways are activated increasing fuel metabolism and cell growth 
through Akt‑dependent pathways. Energy sensing pathways such as AMP‑activated protein kinase and mammalian target of rapamycin 
are potential targets to blunt cell growth either through caloric restriction or pharmacologically.
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potential anti‑neoplastic effects relates to the systemic 
action of this drug,  (e.g.,  by reducing circulating glucose 
and insulin levels) and/or some direct action on cancer 
cells. Preclinical data suggests that the anti‑tumorigenic 
efficacy of metformin is dependent on the obese and insulin 
resistant state.[57,58] Metformin‑mediated AMPK activation 
decreases cell growth in vitro and in xenograft models through 
inhibition of mTOR.[59,60] Thus, metformin may have dual 
interrelated anti‑tumorigenic functions – inhibition of the 
mTOR pathway and disruption of glucose uptake by cancer 
cells. Taken together, obesity is a high‑energy condition 
that promotes increased growth factor signaling through 
the insulin/IGF‑1 axis and is a nutrient‑rich environment 
ultimately driving excessive stimulation of the PI3K/Akt/
mTOR pathway [Figure 1].[34,35,61,62]

Estrogens
Obesity can drive carcinogenesis by increasing estrogen 
concentrations. Obese adipose tissues up‑regulate the 
conversion of androstenedione to estrone and testosterone 
to estradiol,[63,64] while at the same time reducing sex 
hormone‑binding globulin capacity which leads to 
increased levels of free, biologically active estrogens.[64,65] 
In postmenopausal women, aromatization of androgens 
in the adipose tissue by aromatase elevates local and 
circulating levels of estrogen, although this is not true in 
some murine models (data not shown). Obesity‑associated 
cytokines including interleukin‑6 and tumor necrosis factor 
alpha  (TNF‑α), and adipokines, such as leptin, stimulate 
aromatase activity leading to an increase in estrogen 
synthesis, while weight loss has been shown to blunt estrogen 
levels.[64,66] The role of obesity in regulation of estrogen and 
progesterone are reviewed in detail.[67,68]

Adipokines
The adipose tissue secretes several growth factors and 
cytokines, known as the adipokines, involved in energy 
homeostasis, immunity, angiogenesis, and endocrine 
signaling.[18] Leptin is produced mainly by expanding white 
adipose tissue, and is involved in the regulation of energy 
homeostasis.[18] Leptin activates the Janus kinase  (JAK)/
signal transducer and activator of transcription  (STAT), 
mitogen activated protein kinase  (MAPK)  –extracellular 
signal‑regulated kinases  (ERK1/2), PI3K/Akt, AMPK, 
and insulin receptor substrates pathways  [Figure  1]. 
Leptin is mitogenic, anti‑apoptotic, pro‑angiogenic, and 
pro‑inflammatory, and thus, is implicated in the stimulation, 
migration, and invasion of tumor cells, as well as in the 
production of cytokines by macrophages.[69] Leptin also 
induces activation of the ERBB‑2 pathway which interacts 
with IGF‑1 to promote migration and metastasis of tumor 
cells.[70,71]

Adiponectin is inversely correlated with obesity and leptin 
concentrations. Adiponectin regulates energy intake and 
expenditure, and plays an anti‑inflammatory, anti‑atherogenic, 
and insulin sensitizing role in metabolism. In cancer, 
adiponectin acts as anti‑angiogenic, antiproliferative, 
pro‑apoptotic, and anti‑inflammatory mediator through 
AMPK and peroxisome proliferator‑activated receptor 
signaling[72]  [Figure  1]. Adiponectin blocks induction of 
angiogenic vascular endothelial growth factor  (VEGF) by 
suppressing TNF‑α, inducing apoptosis and inhibiting 
migration in the vascular endothelial cells.[73,74] Decreased 
adiponectin level correlates with increased BC risk in 
postmenopausal women[75,76] and conversely high levels of 
adiponectin are associated with an increased BC survival.[77] 
The leptin:  adiponectin ratio may be the most relevant 
indicator of cancer risk as reviewed in detail.[12,78] VEGF, 
basic fibroblast growth factor, and hepatocyte growth factor 
are other growth factors involved in BC‑related angiogenesis 
under investigation.[50,79,80]

Normal microenvironment
While basic science research has traditionally focused on 
understanding the contribution of genomic mutations within 
the cancerous epithelial cells, the characteristics of the tissue 
microenvironment are proposed to play an integral role 
in supporting the proliferation of cancer cells.[81] In order 
to proliferate and escape apoptotic control mechanisms, 
transformed epithelial cells must adapt to – and take advantage 
of the conditions within the microenvironment in which they 
reside.[82,83] In the breast, stromal cells including, adipocytes, 
fibroblasts and macrophages and other immune cells play 
fundamental roles in normal mammary development as 
well as carcinogenesis.[84] Macrophage, eosinophil, and mast 
cell influx typify different developmental stages and aid in 
mammary gland formation and involution  (remodeling) 
in the post‑natal period, during puberty, after pregnancy 
and lactation.[22,84‑87] Work by our group and others has 
increasingly linked obesity and inflammation in various 
adipose depots.[22,88,89] In non‑breast tissue, macrophages 
infiltrate adipose tissue at the onset of weight gain and directly 
contribute to and perpetuate the chronic inflammation 
characteristic of obese adipose, which is a major causal factor 
of insulin resistance.[18,90,91] Our findings[22], corroborated by 
those of Dr. Dannenberg’s research group have demonstrated 
that both obese women and murine models also have elevated 
macrophage infiltration in normal breast tissue.[92,93]

Tumor microenvironment
Macrophage infiltration in the tumor microenvironment 
is also a well‑established phenomenon; tumor associated 
macrophages  (TAMs) correlate with increased tumor 
angiogenesis, positive lymph node status and reduced 
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survival of BC patients.[94‑96] Furthermore, macrophage 
influx during ductal involution is proposed to create 
the pro‑inflammatory microenvironment that promotes 
pregnancy associated BC.[84] Macrophage infiltration 
in the microenvironment of ductal carcinoma in  situ 
is associated with high‑grade, ER‑  and PR‑negative 
BCs.[97] Indeed, BBC is characterized by unique 
epithelial‑stromal interactions,[50,98] relative to other 
BC subtypes,[98] which likely play a role in its etiology. 
TAM production of tumor‑promoting factors, such as 
epidermal growth factor  (EGF)[96] and VEGF,[94] are 
recognized as particularly important in BBC,[99,100] and are 
microenvironment‑mediated mechanisms of BBC onset. 
Other stromal cells also contribute to alterations in the 
tumor microenvironment. Dr. Lisanti’s research group 
have shown that stroma plays a vital role in the metabolism 
of the tumor, termed the “reverse Warburg effect,” via 
fibroblast‑mediated metabolism.[101‑104] Cancer associated 
fibroblasts react to oxidative stress emitted from tumor 
cells by driving the production of inflammatory mediators 
and up‑regulating glycolysis in a hypoxia‑inducible factor 
α/Nuclear Factor  ‑kB‑dependent manner to generate 
metabolites for energy and proliferation of neighboring 
epithelial tumor cells.[101,105] This cross‑talk allows for 
tumor progression that is intricately linked to stromal 
metabolism. Finally, Stewart et al. have demonstrated that 
basal‑like epithelial cells foster a pro‑inflammatory milieu 
that drives differentiation and polarization of monocytes to 
macrophages[23,98] and is established by direct interactions 
between primary BBC patient‑derived fibroblasts and 
mammary epithelial cells in culture.[50] Recent studies 

have also identified a role for neutrophils and mast cells 
in promoting a pro‑tumorigenic breast microenvironment 
by promoting the release of cytokines and chemokines, 
reactive oxygen and proteases.[106]

Anti‑inflammatory approaches
Will addressing inflammation cure cancer? Although a 
tantalizing hypothesis, this is not a simple question to 
answer due to the complicated nature of macrophage 
polarization. Macrophages polarized toward the M1‑like 
or the classical phenotype, tend to be pro‑tumoricidal 
while M2‑like or alternatively activated macrophages, may 
be protective of tumor cell growth[107] [Figure 2]. In BC, 
T‑helper 2 cell‑derived IL‑4 mediates M2 polarization and 
promotes metastasis.[108] B cells in the microenvironment 
can also skew macrophage function and promote tumor 
progression via IL‑10 induction.[108,109] Animal models 
of BC have demonstrated that inflammatory processes 
contribute to tumor proliferation and metastasis while 
anti‑inflammatory drugs are chemopreventive.[87,94,96,110‑115] 
Epidemiological studies indicate that anti‑inflammatory 
drugs reduce the risk of both receptor‑positive and ‑negative 
BC.[29,116,117] Interactions between the stromal and 
metabolic microenvironment likely regulate the immune 
cell population, TAM infiltration and polarization and 
microenvironment‑mediated plasticity; all which are 
currently under investigation. Understanding how 
metabolic pathways are altered in tumors and how cancer 
cells benefit from tumor‑specific metabolic changes may 
contribute to the identification of novel therapeutic targets 
and the development of more effective cancer therapies.

Figure  2: Recruitment of inflammatory cells in the tumor microenvironment mediated by obesity.  (a) Obese adipose tissue is 
characterized by hypertrophy and hyperplasia of adipocytes, apoptosis and a shift in the stroma from less inflammatory eosinophils and 
M2‑polarized cells (promoting insulin sensitivity), to an environment rich in pro‑inflammatory M1‑polarized macrophages, crown‑like 
structures and activated fibroblasts. The mammary gland displays many of the same phenotypic changes with obesity. This low‑level 
chronic inflammation in the tissue is known to induce oncogenesis, with an interesting shift in polarized macrophages from less M1 
tumoricidal macrophages to more M2 tumor‑promoting macrophages (b).

ba
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CONCLUSION

While some epidemiologic studies fail to find evidence 
supporting diet‑mediated risk on BC,[118‑120] lifestyle factors 
such as geographic differences and immigrant studies as well 
as rodent models, suggest that diet‑induced obesity may 
play a role in oncogenesis. The underlying causes of obesity 
represent a complex web of interactions including inherited 
genetic traits, low physical activity levels, environmental 
factors such as toxins and access to affordable, healthy 
food, cultural identity, socioeconomic status and others.[121] 
Despite all of the work aimed at ameliorating obesity, recent 
projections have estimated that 51% of the US population will 
be obese by 2030.[122] Because obesity rates continue to increase 
worldwide, understanding the role of obesity in carcinogenesis 
is a question with high public health impact, with the added 
potential of reducing health disparities associated with certain 
cancers. Prevention of BC via reduction of obesity offers an 
important and unique opportunity for intervention. Nearly 
90,000 cancer related deaths in the US could be avoided if 
adults maintained a BMI < 25 for life.[123]

Effective and targeted prevention of cancer among obese 
individuals depends upon understanding the molecular 
underpinnings of obesity‑associated BC risk. Specifically, 
researchers need to elucidate the effects of aberrant systemic 
metabolism on the characteristics of tissue microenvironments 
and the promotion of cancer. Highlighting the relationship 
between nutritional state and disease, populations that suffered 
from severe caloric restriction, such as during World War II 
WWII and other famines, exhibit lower death rates from a 
broad spectrum of cancers.[124,125] Epidemiologic associations 
suggest that caloric restriction may be protective against 
BBC,[27] but this needs to be validated in additional animal 
studies and clinical trials. Caloric restriction or drugs that 
mimic it  (like mTOR inhibitors) are approaches currently 
under study in primate models[126‑128] and rodents (reviewed in 
detail[125]). In addition, the glucose lowering agent metformin 
has been effective in reducing overall cancer incidence and 
mortality.[129,130] Ideally, integration of tumor characteristics and 
the microenvironment using physiologic, immunohistologic, 
metabolomic, and transcriptomic data should be used to 
construct a complete picture of the role of obesity‑mediated 
alterations in the etiology of cancer. Furthermore, focusing on 
a specific window of susceptibility to cancer onset or metabolic 
state may be the most direct approach to understand links 
between obesity and oncogenesis.
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