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Abstract
The liver kinase B1 (LKB1) tumour suppressor functions as a master regulator of growth, metabolism and 
survival in cells, which is frequently mutated in sporadic human non‑small cell lung and cervical cancers. LKB1 
functions as a key upstream activator of the AMP‑activated protein kinase (AMPK), a central metabolic switch 
found in all eukaryotes that govern glucose and lipid metabolism and autophagy in response to alterations in 
nutrients and intracellular energy levels.  The LKB1/AMPK signalling pathway suppresses mammalian target of 
rapamycin complex 1 (mTORC1), an essential regulator of cell growth in all eukaryotes that is deregulated 
in a majority of human cancers. LKB1 inactivation in cancer leads to both tumorigenesis and metabolic 
deregulation through the AMPK and mTORC1‑signalling axis and there remain critical challenges to elucidate 
the direct role LKB1 inactivation plays in driving aberrant metabolism and tumour growth. This review 
addresses past and current efforts to delineate the molecular mechanisms fueling metabolic deregulation and 
tumorigenesis following LKB1 inactivation as well as translational promise of therapeutic strategies aimed at 
targeting LKB1‑deficient tumors.

Keywords: AMP‑activated protein kinase, fluoro‑deoxyglucose positron emission tomography, liver 
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INTRODUCTION

The liver kinase B1 (LKB1) tumour suppressor (LKB1 also 
known as serine/threonine kinase 11) that functions as a master 
regulator of growth, metabolism and survival in cells. LKB1 
was originally identified as a tumour suppressor gene located 
on chromosome 19p13 where loss or mutation of this gene 
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is responsible for the inherited cancer disorder Peutz‑Jeghers 
Syndrome (PJS).[1] Importantly, LKB1 is frequently mutated 
in ~30% of sporadic human non‑small cell lung cancer 
(NSCLC) and 20% of cervical cancers.[2‑4] A critical link 
directly connecting LKB1 to cell metabolism and cancer came 
from the discovery that LKB1 was the key upstream activator 
of the AMP‑activated protein kinase (AMPK),[5‑8] a central 
metabolic switch found in all eukaryotes that governs glucose 
and lipid metabolism and autophagy in response to alterations 
in nutrients and intracellular energy levels. In addition, LKB1 
functions as a negative regulator of mammalian target of 
rapamycin complex 1 (mTORC1), an essential integrator 
of nutrient and growth factor signals that controls cell 
growth in all eukaryotes and is deregulated in a majority of 
human cancers.[9] Nearly 90 years ago Otto Warburg first 
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described aerobic glycolysis in tumour cells and renewed 
interest in the Warburg effect has propelled metabolism to 
the forefront of cancer biology.[10] LKB1 inactivation in cancer 
leads to both tumorigenesis and metabolic deregulation 
through the AMPK and mTORC1‑signalling axis and there 
remain critical challenges to elucidate the direct role LKB1 
inactivation plays in driving aberrant metabolism and tumour 
growth. This review will address past and current efforts 
to delineate the molecular mechanisms driving metabolic 
deregulation and tumorigenesis following LKB1 inactivation 
as well as therapeutic strategies to target LKB1 regulated 
pathways and their translational promise.

LKB1 IS A MASTER KINASE REGULATING 
METABOLISM AND GROWTH THROUGH 
AMPK AND MTOR SIGNALLING

LKB1 regulation of growth and metabolism through 
AMPK and mTOR signalling
The activated LKB1 kinase exists as a trimeric complex with 
the pseudo kinase STE20‑related adaptor‑α STRADα) 
and scaffolding protein mouse protein 25α,[11‑13] where it 
regulates metabolism through the direct phosphorylation 
and activation of AMPK along with 12 other closely related 
AMPK‑like kinases whose functions span a broad spectrum of 
biology including regulation of metabolism, growth, polarity 
and cell survival.[14,15] AMPK is the only LKB1 substrate that is 
activated under low adenosine triphosphate (ATP) conditions 
following nutrient deprivation or hypoxia and functions as 
a cellular rheostat maintaining energy homeostasis. AMPK 
exists as a heterotrimeric complex composed of a catalytic 
subunit (AMPKα1, α2) and two regulatory subunits 
(AMPKβ1, β2 and AMPKγ1, γ2, γ3). AMPK is activated 
upon the direct binding of adenosine diphosphate (ADP) or 
adenosine monophosphate (AMP) to the γ subunit where 
AMPK undergoes a conformational change leading to the 
phosphorylation of Thr172 on the activation loop of the 
α subunit.[16‑18] LKB1 was found to be the key upstream 
activating kinase of AMPK,[6‑8] however, AMPK is activated 
as weel by calmodulin‑dependent protein kinase kinase β 
in response to calcium flux and potentially TAK1 in certain 
cellular contexts.[19‑21]

During periods of energetic stress AMPK activation results 
in the activation of catabolic pathways and the concomitant 
inhibition of anabolic metabolism, which serve to restore 
energy homeostasis. Acute activation of AMPK regulates 
cellular metabolism through activation of AMPK substrates 
including the 6‑phosphofructo‑2‑kinase pathway, acetyl 
coenzyme A carboxylase, 3‑hydroxy‑3‑methyl coenzyme 
A reductase, which rapidly lead to the activation of glucose 
metabolism and fatty acid synthesis.[22‑25] Long‑term activation 

of AMPK results in the phosphorylation and activation of 
transcriptional factors involved in adaptive reprogramming 
of cellular metabolism. For complete and detailed reviews of 
AMPK’s role in regulation of metabolism refer to reviews by 
Mihaylova and Shaw 2011 and Hardie et al., 2012.[26,27]

The LKB1/AMPK signalling pathway is a negative regulator 
of the mTORC1 signalling complex [Figure 1], a central 
integrator of nutrient and growth factor inputs that controls 
growth and the metabolic landscape of cells in all eukaryotes 
and is deregulated in a majority of human cancers,[28,29] 
mTOR is found in two biochemically and functionally 
discrete signalling complexes,[30] mTOR complex 1 includes 
raptor, which acts as a scaffold to recruit downstream 
substrates such as translation initiation factor 4E‑binding 
protein 1 (4E‑BP1) and ribosomal S6 kinase (p70S6K1) that 
contribute to mTORC1‑dependent regulation of protein 
translation.[31] In contrast, mTOR complex 2 contains the 
rictor subunit and is neither sensitive to nutrients nor acutely 
inhibited by rapamycin,[9] mTORC1 controls the translation 
of a number of cell growth regulators, including cyclin D1, 
hypoxia inducible factor 1 α (HIF‑1 α) and c‑Myc, which 
in turn promote processes including cell cycle progression, 
cell growth, metabolism and angiogenesis, all of which 
can become deregulated during tumorigenesis.[9] AMPK 
inhibits mTORC1 through the direct phosphorylation 
of both tuberous sclerosis complex 2 (TSC2) and the 
mTORC1 scaffolding protein raptor.[32‑35] TSC2 inhibits 
mTORC1 indirectly via regulation of the small guanine 
triphosphate hydrolase (GTPase) Rheb, such that loss of 
TSC1 or TSC2 leads to hyperactivation of mTORC1,[36] 
while phosphorylation of raptor was shown to be required for 
down regulation of mTORC1 and efficient G2/M cell cycle 
arrest following AMPK activation,[35] [Figure 1].

LKB1 INACTIVATION LEADS TO 
TUMORIGENESIS AND ALTERED 
METABOLISM

LKB1 is a frequently mutated tumour suppressor 
gene
Mutations in LKB1 lead to an inherited cancer syndrome 
known as PJS collectively belong to a group of syndromes 
known as phakmatoses in which patients develop benign 
hamartomas and are predisposed to a number of other 
malignancies, including breast, ovarian, endometrial and 
pancreatic tumors,[37] many of which have been studied in 
specific LKB1 mouse models [Table 1]. This increased cancer 
risk in PJS patients prompted the discovery that LKB1 is 
frequently mutated in lung and cervical cancer patients, which 
has intensified the focus to understanding the molecular basis 
of LKB1 mediated carcinogenesis.[2,4] LKB1 mutations are most 
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prevalent in male smokers and frequently co‑mutate with the 
Kirsten rat sarcoma viral oncogene homolog (KRAS) and p53 
genes, which may in part explain the low frequency of lung 
cancer in PJS patients as cigarette smoke likely compounds the 
mutational spectrum in NSCLC, however, definitive studies 
directly linking cigarette smoke to LKB1 mutation have yet 
to be performed. Importantly, LKB1 inactivation may be an 
early event in carcinogenesis as LKB1 mutations have been 
found in early as well as late stage primary lung tumors.[38] 
A recent study examining organ specific deletion of LKB1 
during the mouse development found that LKB1 inactivation 
alone lead to growth of pancreatic lesions ex vivo.[39] Studies 
of LKB1 inactivation in genetically engineered mouse models 
(GEMMs) of disease further support the idea that loss of LKB1 
may in fact be an early event in carcinogenesis sufficient to 
drive tumour growth. GEMMs targeting LKB1 inactivation 
in a broad spectrum of tissue accurately mimic human tumors 
commonly found to bear LKB1 mutations [Table 1].

LKB1‑AMPK regulation of the Warburg effect in vivo
Deletion of LKB1 in human cancer cell lines and murine 
embryonic fibroblasts (MEFs) and gastrointestinal hamartomas 
from LKB1 +/‑ mice resulted in hyperactivation mTORC1.[34,40] 
Loss of function studies of LKB1 or AMPK in fibroblasts 
as well as epithelium from gastrointestinal hamartomas 
from Peutz‑Jeghers patients or LKB1 +/‑ mice also show 

increased expression results in increased HIF‑1 α and its 
targets Glucose transporter 1 (GLUT1) and hexokinase in 
a rapamycin‑reversible manner,[41] suggesting that HIF‑1 α 
may be a relevant target downstream of LKB1‑deficiency in 
PJS. 18F‑Fluoro‑deoxyglucose positron emission tomography 
(18FDG‑PET) imaging studies on LKB1 +/‑ mice showed that 
their gastrointestinal hamartomas have increased maximum 
standard uptake values (SUVmax) correlating with the 
increased GLUT1 expression and suggest that loss of LKB1 
drives glycolytic metabolism.[41]

Recent studies in murine T and B‑cells and hematopoietic 
stems cells (HSCs) have demonstrated the LKB1‑AMPK 
pathway is critical to metabolism and survival.[42‑45] A recent 
loss of function study of AMPKα1 in the Eµ‑Myc murine 
lymphoma model and in fibroblasts confirmed the role of 
the LKB1‑AMPK pathway in suppressing the Warburg effect 
as deletion of AMPKα1 resulted in increased mTORC1 and 
HIF1 α dependent glucose metabolism. This is the first study 
to identify AMPK as a potential tumour suppressor gene as 
inactivation of AMPKα1 ‑/‑ resulted in accelerated tumour 
growth of  Eµ‑Myc lymphomas.[46] While both T and B cells 
only have one copy of AMPKα1,[47] the majority of human and 
murine epithelial tissues expresses both α1 and α2 genes and it 
will be important to identify the tumour suppressor functions 
of both the α1 and α2 genes in various tissues. Studies of LKB1 

Figure 1: Schematic representation of the Liver Kinase B1 dependent regulation of growth, metabolism and mitochondrial homeostasis 
through AMP‑activated protein kinase (AMPK) and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Both 
tumour suppressors (in blue) and oncogenes (in red) regulate mTORC1 and are frequently mutated in cancer. mTORC1 effectors S6K 
and 4E‑binding protein 1 and mTORC1‑regulated transcription factors such as sterol regulatory element‑binding protein 1 (SREBP1) 
and HIF1α, cMYC and Cyclin D1 (in green) are involved in cell growth, lipid and glucose metabolism and angiogenesis. AMPK suppresses 
mTORC1 through activation of tuberous sclerosis complex 2 and raptor and regulates mitochondrial homeostasis through peroxisome 
proliferator‑activated receptor gamma coactivator 1‑α (PGC1 α) and Unc51 like kinase 1
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inactivation in NSCLC likewise revealed increased mTORC1 
signalling and metabolic deregulation that correlated with 
elevated GLUT1 expression and increased SUVmax following 
18FDG‑PET imaging in both human and murine lung tumors 
suggesting that increased glucose metabolism is a conserved 
phenotype in LKB1 ‑/‑ tumors.[48,49]

LKB1 mediated regulation of mitochondrial 
homeostasis
Recent work in HSCs and NSCLC has shed light on 
LKB1 role as a regulator of mitochondrial function and 
aerobic metabolism, where LKB1 ‑/‑ murine HSCs show 
mitochondrial defects including increased mitochondrial 
content and reduced mitochondrial membrane function.[43‑45] 
It was recently discovered that AMPK directly phosphorylates 
the Unc51 like kinase (ULK1), a key upstream regulator of 
autophagy and mitochondrial turnover known as mitophagy.[50] 
AMPK ‑/‑ and ULK1 ‑/‑ MEFs displayed mitochondrial defects 
similar to LKB1 ‑/‑ HSCs and a loss of mitophagy resulting 
in the accumulation of defective mitochondria. Analysis of 
LKB1 ‑/‑ NSCLC tumour lines revealed mitochondrial defects 
and inactivation of the AMPK‑ULK1 mitophagy signalling 
pathway as well as reduced oxidative phosphorylation.[48] These 
studies suggest that LKB1 inactivation and the resultant loss 
of AMPK‑ULK1 regulated mitophagy may lead to aberrant 
mitochondrial pools compromising aerobic respiration in 

tumour cells. As both mitophagy and biogenesis are regulated 
by AMPK through peroxisome proliferator‑activated 
receptor gamma coactivator 1‑α (PGC‑1 α) and ULK1, the 
accumulation of defective mitochondria following LKB1 
loss appears to reduce the respiratory capacity in tumour 
cells and may be another mechanism by which LKB1 
inactivation drives glycolytic metabolism. Additionally, Myc 
overexpressing tumour cells were shown to rely on the LKB1 
substrate AMPK‑related protein kinase 5 (ARK5, also known 
as NUAK1) and the AMPK‑mTORC1 signalling axis to 
maintain glutamine metabolism during energy stress and 
readily underwent apoptosis following glucose starvation or 
inhibition of ARK5 and mTORC1.[51] Future metabolomics 
studies investigating the integration of respiration, glycolysis 
and glutaminolysis will shed light to the global metabolic 
rewiring that occurs following LKB1 loss.

THERAPEUTICALLY TARGETING THE 
LKB1‑AMPK SIGNALLING PATHWAY IN 
CANCER

Targeting mTOR signalling in LKB1‑deficient 
tumors
Preclinical studies examining rapamycin in Lkb1 deficient 
murine models of PJS, lung and endometrial cancers have 
yielded mixed results. Spontaneously arising hamartomas 

Table 1: LKB1 mutations in human disease and modeling Lkb1 inactivation in cancer using genetically engineered 
mouse models  (GEMMs)
Human Disease GEMMs Phenotype Refs

Peutz‑Jeghers Syndrome Lkb1+/‑
Lkb1+/‑;p53+/‑ and Lkb1+/‑;p53+/‑
SM22‑Cre‑Lkb1lox/lox  

Benign intestinal hamartomas, accelerated intestinal 
hamartomas with p53 loss, osteoblastic differentiation

[40, 90‑93] 

Hepatocellular Carcinoma Lkb1+/‑; p53+/‑
Lkb1+/‑; p53‑/‑ 

Hepatocellular carcinomas (in one mouse strain), with 
evidence of osteosarcomas and lymphomas

[94‑96] 

Non‑Small Cell Lung Cancer Lox‑Stop‑Lox‑KrasG12D; Lkb1lox/lox 
(delivered by intranasal inhalation of 
adeno‑Cre virus) 

Development of aggressive non‑small cell lung carcinomas 
that have adeno, squamous large cell and mucinous 
adenocarcinoma in situ tumors; widespread metastases.

[2,3,97,98] 

Cervical Cancer Lkb1+/‑ or Lkb1lox/lox (intrauterine 
injection of adeno‑Cre virus)
Sprr2f‑Cre‑Lkb1lox/lox 
Misr2‑Cre‑Lkb1lox/lox Lkb1lox/lox;Ptenlox/lox 

Invasive endometrial adenocarcinoma; oviductal neoplasia [4,56,57, 99] 

Melanoma Tyr‑Cre‑ERT2‑Lox‑Stop‑Lox‑KrasG12D; 
Lkb1lox/lox

Development of Aggressive and metastatic melanomas [86] 

Breast Cancer BLG‑Cre‑Lkb1lox/lox 
WAP‑Cre‑cMyc;Lkb1lox/lox 

Mammary tumors, occasional DCIS and squamous 
differentiation.
Accelerated development of mammary intraepithelial 
neoplasia (MIN) and adenocarcinoma

[100,101] 

Prostate Cancer P450CYP1A1‑Cre‑Lkb1lox/lox  Hyperplasia and neoplasia of the prostate epithelium [102] 

Pancreatic Cancer Lkb1+/‑ or Pdx‑Cre‑Lkb1lox/lox and 
Pdx‑Cre‑LSL‑KrasG12D; Lkb1lox/+ 

Benign pancreatic cystadenomas
Pancreatic ductal adenocarcinoma (PDAC)

[103]
[106]  

Head and neck squamous cell 
carcinoma 

K14‑Cre‑Lkb1lox/lox or Lkb1+/‑ with 
DMBA administered to skin 

Squamous cell carcinoma of the skin and lung [104,105] 

Bladder AhCreERTM‑Lkb1lox/lox 
AhCreERTM‑Lkb1lox/lox;Ptenlox/lox 

Papillary tumors 
Accelerated papillary tumors with squamous differentiation

[55] 

Lymphoma Lkb1 hypomorph;Pten+/‑

Lck‑Cre‑Lkb1lox/lox
Accelerated development of lymphomas
Impaired T cell development

[42,80]
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in Lkb1‑/‑ mice responded well.[41,52] Translation of these 
rapamycin studies to treat phakmatoses in clinical trials has 
proven successful in TSC and Lymphangioleiomyomatosis  
patients,[53,54] while early phase clinical trial testing rapalogs in 
PJS patients have suffered from low enrollment. Rapamycin 
as a single agent has been shown to potently inhibit growth 
and viability of endometrial carcinomas, ovaductal neoplasias 
and papillary bladder tumors in Lkb1‑/‑ and Lkb1‑/‑; Pten‑/‑ 
GEMMs,[55‑57] however, in KrasG12D driven LKB1 deficient 
GEMMs of lung cancer rapamycin failed to induce a therapeutic 
response.[58] Clinical trials assessing rapalogs on advanced stage 
tumors have seen variable results and much of the resistance of 
advanced tumors to rapamycin may be due to mTORC2‑AKT 
mediated reactivation of mTORC1 and rapalogs have performed 
poorly in clinical trials as tumour frequently become resistant.[59] 
It will be important to identify the appropriate genetic and 
molecular context in advanced tumors that dictate either 
sensitivity or resistance to rapamycin and rapalogs.

The development of next generation mTOR inhibitors that 
target the kinase domain of mTOR or dual mTOR/PI3K may 
in fact induce a greater therapeutic response with targeted 
cytotoxicity to mTOR dependent tumors.[60‑62] Treatment of 
KRAS driven, PI3KCA mutant murine lung tumors with the 
dual PI3K/mTOR inhibitor BEZ235 resulted in inhibition of 
both PI3K and mTOR signalling and regression of primary 
lung tumors. Importantly, inhibition of the PI3K/mTOR 
pathway, lead to a dramatic reduction of 18FDG uptake 
suggesting a robust inhibition of glucose metabolism.[63] 
A recent study that examined the mTOR kinase inhibitor 
INK128 found this drug to dramatically inhibit mTORC1 
and mTORC2 signalling in both human and murine PTEN 
‑/‑ prostate tumour models that resulted in tumour regression 
and inhibition of epithelial‑mesenchymal transition through 
down regulation of the mTOR‑mediated translatome.[64] The 
predicted effectiveness of targeted mTOR kinase inhibitors 
against LKB1 deficient tumors of different tissues remains 
to be tested.

Using AMPK agonists as cancer therapeutics
AMPK’s negative regulation of mTORC1 [Figure 1] and its 
ability to both acutely and durably rewire cellular metabolism 
suggest that AMPK activating drugs may be useful as cancer 
therapeutics.[65] One of the most commonly used AMPK 
agonist is the biguanide metformin (Glucophage), which is 
the most widely used type 2 diabetes drug in the world and 
taken by approximately 120 million patients daily. Several 
retrospective studies revealed a strong correlation between 
reduced cancer risk and mortality in diabetic patients taking 
metformin,[66‑68] agreeing with early studies showing that 
biguanides suppressed naturally arising tumors in both 
transgenic and carcinogen treated rodent cancer models.[69,70] 

Metformin and its more potent analog phenformin induce 
energy stress through inhibition of complex I of the 
mitochondrial respiratory chain, resulting in elevated 
intracellular ADP/AMP levels and AMPK activation.[71] 
Biguanides are thought exert their anti‑cancer effects on 
tumour cells in part through activation of the AMPK pathway, 
but in reality these drugs work through a broad spectrum of 
mechanisms that extend beyond the AMPK pathway solely.[72]

AMPK agonists such as metformin, phenformin, AICAR, 
2‑deoxyglucose and thiazolidinediones have been shown 
to inhibit the growth of a wide variety of tumour cells 
in culture and xenografts in AMPK‑dependent and 
independent manners,[73] for a detailed review please see 
reference.[74] Other widely used metabolic stress agents and 
AMPK activators include the natural product berberine 
found in green tea and salicylic acid (aspirin) found in most 
bathroom medicine cabinets. Recently, aspirin was identified 
as a direct AMPK activator,[75] and strikingly, colorectal cancer 
patients with PI3KCA mutations who took aspirin showed a 
significant reduction in mortality.[76] A separate study found 
increased AMPK activation and reduced mTORC1 signalling 
in colorectal cancer biopsies samples from patients taking 
aspirin daily,[77] suggesting that inhibition of PI3K/mTOR 
signalling via aspirin mediated activation of AMPK may lie 
at the heart of such striking results.

Inhibiting tumour cell growth and proliferation through 
AMPK activation in LKB1‑/‑ tumour cells can also be 
achieved by AMPK agonists that work independently of 
LKB1. The small molecule Abbott A769662 is an allosteric 
activator of AMPK that can directly activate AMPK 
independently of LKB1, however, the exact region of the 
AMPK complex to which A769662 binds is unknown.[78,79] 
A769662 showed in vivo activation of AMPK and anti‑tumour 
efficacy in a Pten +/‑ model of lymphoma.[80] Selective killing 
of LKB1 ‑/‑ tumour cells can also be achieved by exploiting 
metabolic and oxidative stress pathways that become 
deregulated upon inactivation of the LKB1/AMPK pathway. 
Tumour cells lacking LKB1 are hypersensitive to apoptosis 
in culture following treatment with energy stress inducing 
agents, presumably originating from an inability to restore 
ATP levels due to AMPK deficiency.[8] We have recently 
shown that LKB1 loss selectively sensitizes human and 
murine models of  NSCLC to phenformin through metabolic 
and oxidative stress,[48] [Figure 2]. Our results agree with 
recent studies that showed AMPK mediates cell survival not 
only through maintaining cellular ATP but also by restoring 
nicotinamide adenine dinucleotide phosphate (NADPH) 
levels required to quench reactive oxygen species that 
accumulate during periods of metabolic stress.[83] Expanding 
the use of phenformin beyond LKB1 deficient lung tumors, 
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a recent study found that phenformin significantly inhibited 
growth of estrogen receptor positive and triple negative 
breast cancer cells in xenograft models.[81] Phenformin was 
withdrawn from clinical use in the late 1970s due to the 
occurance of lactic acidosis in a subset of diabetics on the 
drug,[82] however, it may find modern use as an anti‑cancer 
agent as the dosing and duration of its use for cancer would 
be quite different from its use for diabetes.[84] Given the 
known pharmacokinetics and widespread long‑term clinical 
use of biguanides, the potential for metabolic therapies to 
be repurposed as chemotherapies to target LKB1 deficient 
tumors warrants further attention.

Translational outlook – the promise and the reality
Before LKB1 ‑/‑ tumors can ever be successfully treated with 
targeted or metabolic therapies it must become common 
practice to perform genetic screening for LKB1 mutations 
in tumour types with a high frequency of LKB1 mutations. 
The elevated glycolytic metabolism of LKB1‑deficient tumors 
in patients should allow these tumors to be readily imaged 
by 18FDG‑PET. 18FDG uptake need not only be viewed 
as a surrogate end stage biomarker but as a diagnostic tool 
providing details to tumour metabolism and therapeutic 
response following treatment.[48,49] AMPK activating drugs 
and metabolic therapies, like most targeted therapeutics, 
are expected to be most effective against tumors of specific 
genotypes. The relative success of  biguanides in preclinical 
studies must be taken cautiously as many studies are performed 
at supra‑physiological concentrations in cell culture and 

rodent cancer models that will never be achieved in man.[84] 
Therefore, careful studies of biguanides and other AMPK 
agonists at physiologically relevant concentrations are needed 
to understand their true potential. Given the multitude of 
deregulated effectors following LKB1 inactivation, it is likely 
that a combination of therapies will be required. Combining 
PI3K and MEK inhibitors with the Src inhibitor dasatinib in 
murine KrasG12D; Lkb1 ‑/‑ (KL) GEMMs induced a potent 
tumour response in non‑small cell lung tumors and to a lesser 
degree in melanomas.[85,86] The tyrosine kinase and VEGF 
receptor inhibitor sunitinib decrease tumor burden, increased 
tumor necrosis and prolonged survival in KL GEMMs.[89] 
The elevated expression of both HIF1 α and GLUT1 in 
LKB1 ‑/‑ tumors suggests both these proteins may be likely 
candidates for targeted therapies such as the small molecule 
inhibitor of GLUT1, STF31, which was recently identified 
for the treatment of renal cell carcinoma,[87,88] [Figure 2]. 
The advent of recent phase I/II clinical trials combining 
metformin and chemotherapies for metastatic breast cancer 
(Clinical Trial NCT01310231) along with the completion 
of recent clinical trials testing rapalogs and next generation 
PI3K/mTOR inhibitors should provide valuable insight 
into the effectiveness and future of these drugs as realistic 
therapies for the treatment of  LKB1 deficient cancer.[59] 
Achieving personalized treatments will require defining 
which oncogenic genotypes sensitize tumors to AMPK 
activating or mTOR inhibiting drug treatments and is an 
important goal for future studies.

Figure 2: Therapeutically targeting the AMP‑activated protein kinase (AMPK) and mammalian target of rapamycin complex (mTORC1) 
signaling pathways in liver kinase B1 (LKB1) ‑/‑ tumors. Schematic representation of therapeutic strategies targeting AMPK and the 
mTORC1 signaling pathway following LKB1 inactivation. (a) A representation of AMPK agonists that mimic cellular energy stress 
creating metabolic and oxidative stress that results in tumor cell death. (b) A representation of therapies targeting critical upstream 
and downstream effectors of mTORC1 in LKB1 ‑/‑ tumors
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