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Abstract
Since their first discovery as potential anti-cancer drugs decades ago, there is increasing evidence that digitalis-
like compounds (DLC) have anti-tumor effects. Less is known about endogenous DLC (EDLC) metabolism and 
regulation. As stress hormones synthesized in and secreted from the adrenal gland, they likely take part in the 
hypothalamo–pituitary–adrenal (HPA) axis. In a previous study, we revealed reduced EDLC concentrations in 
plasma and organs from immune-compromised animals and proposed that a similar situation of a deregulated 
HPA axis with “adrenal EDLF exhaustion” may contribute to tumorigenesis in chronic stress situations. Here, 
we put forward the hypothesis that a lowered EDLC response threshold of tumor cells as compared with 
normal cells increases the risk of tumorigenesis, especially in those individuals with reduced EDLC plasma 
concentrations after chronic stress exposure. We will evaluate this hypothesis by (a) summarizing the effects 
of different DLC concentrations on tumor as compared with normal cells and (b) reviewing some essential 
differences in the Na/K-ATPase of tumor as compared with normal cells (isoform pattern, pump activity, 
mutations of other signalosome receptors). We will conclude that (1) tumor cells, indeed, seem to have their 
individual “physiologic” EDLC response range that already starts at pmolar levels and (2) that individuals with 
markedly reduced (pmolar) EDLC plasma levels are predisposed to cancer because these EDLC concentrations 
will predominantly stimulate the proliferation of tumor cells. Finally, we will summarize preliminary results 
from our department supporting this hypothesis.
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INTRODUCTION

The endogenous digitalis-like compounds (EDLC) belong 

to a family of steroid hormones, which originally stem from 
plants and recently have been demonstrated to be synthesized 
and released mainly in the adrenal gland of different 
species.[1-10] As “stress hormones” similar to cortisol, they 
are integrated in the feedback loops of the hypothalamic–
pituitary–adrenal (HPA) axis and stimulated by ACTH and 
Angiotensin II.[11-15] The EDLC are the natural ligands of 
the Na/K-ATPase (NKA), the classical sodium pump.[16-19] 
It is nowadays well established that the NKA represents also 
a signal transducer that is partly independent from its pump 
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activity.[20-30] Since their first discovery as potential anti-cancer 
drugs decades ago,[31-34] there is increasing evidence over the 
last years, in-vitro and in-vivo, that digitalis-like compounds 
(DLC) have anti-tumor properties.[35-46] These include, 
for example induction of apoptosis via Ca2+-dependant 
caspase-3 activation,[47] promotion of cell cycle arrest and 
cell differentiation via upregulation of the cell cycle inhibitor 
p21cip1,[48] cell growth inhibition via downregulation of 
the NKA-α1 isoform,[49] NF-кB,[50] HIF-1α[51] as well as 
inhibition of topoisomerase I and II[52] and autophagic 
cell death via lysosomal membrane permeabilization[53] 
with interruption of the actin cytoskeleton. Remarkably, 
inhibition of the NKA by DLC also has been shown to 
sensitize cancer cells toward anoikosis.[54] Recently, different 
DLC partly derived from plants (Oleandrin from Nerium 
oleander L.)[55-58] and partly semi-synthetic (UNBS1450 
derived from Calotropis procera)[50,59,60] entered Phase I trials 
in solid tumors with, so far, no toxicity. Less is known about 
the endogenous DLC metabolism and their regulation. As 
mentioned above, they are part of the HPA axis and thus 
also depend on the integrity of the thymus. A bidirectional 
relationship between the thymus and the HPA axis is well 
established, with mutual dependency in maturation and 
function.[61-64] As demonstrated in a previous study, nude 
mice, traditionally used for tumor transplantation, did not 
only reveal reduced basal EDLC concentrations in the adrenal 
gland but also did not respond to an acute stress stimulus, 
even  showing decreased plasma EDLC concentrations 
after additional ACTH application.[15] We proposed that 
this “adrenal EDLC exhaustion” with gradually decreasing 
EDLC plasma concentrations in immune-compromised 
individuals, e.g. after chronic stress exposure, may contribute 
to tumorigenesis.[65] In the recent years, a lot of evidence has 
accumulated that exogenous and endogenous DLC are able to 
induce MAPK signaling pathways via the NKA/Src/epidermal 
growth factor receptor (EGFR) “signalosome”[66-68] and, 
hence, lead either to stimulated cell growth (hypertrophy), 
cell cycle arrest and cell differentiation, or apoptosis.

The kind of interaction between DLC and MAPK signaling 
pathways is dose- and time dependant, and, moreover, 
depends critically on the nature of the involved cell 
membrane receptors, especially the molecular structure 
(isozymes), activity and cellular amount of the NKA. It 
also depends on the mutation status of the tyrosine kinase 
receptors, e.g. the EGF-R.

We put forward the hypothesis that a lowered endogenous 
DLC response threshold of tumor as compared with normal 
cells [Figure 1] increases the risk of tumorigenesis, especially 
in individuals with reduced EDLC plasma concentrations 
after long stress exposure.

In the first part of evaluation, we will summarize data about 
either cell growth-stimulating or -inhibiting effects of DLC 
at different dosages on normal as well as tumor cells.

In the second part, we will recapitulate knowledge about the 
characteristics of the NKA in tumor as compared with normal 
cells. Finally, we will develop our hypothesis referring to the 
data mentioned before.

SUMMARY OF THE EFFECTS OF DIGITALIS-
LIKE COMPOUNDS

Sub-physiologic EDLC plasma concentrations  
(1 pM–100 pM)
The in vitro studies analyzing the effect of DLC on diverse cell 
lines scarcely used these low DLC (pmolar) concentrations. 
Most of the studies start cell treatments at 1 nM–10 nM or 
1 nM–100 nM. For instance, Qiu et al.[69] did not see any 
significant impact on cell growth of human umbilical vein 
endothelial cells (HUVEC) at ouabain concentrations <0.1 
nm, i.e. neither cell proliferation nor apoptosis. To our 
knowledge, no data exist about the effects of pmolar DLC 
concentrations on malignant cells.

Physiologic EDLC plasma concentrations  
(0.1 nM–10 nM; max., 100 nM)
Effect on normal cells
Qiu et al.[69] exposed HUVEC to different concentrations 
(0.1 nM–100 nM) of ouabain at 12–48‑h intervals. Ouabain 
stimulated HUVEC cell proliferation at low concentrations 
(1.0 nM) and induced cell death at markedly higher (>100 
nM) concentrations. Aydemir-Koksov et al.[70] demonstrated 
that ouabain at concentrations below those that inhibit the 
pump, i.e. 0.1 nM and 1.0 nM, induced trans-activation 
of the EGF-R, resulting in increased proliferation and 
bromodeoxyuridine (BrdUrd) uptake of canine vascular 
smooth muscle (VSMC) cells. Interestingly, higher ouabain 
concentrations (10 nM) had little or no stimulating effect 
on proliferation. Winnicka et al.[71] showed that in human 
fibroblasts, 30 nM ouabain, digoxin and proscillaridin A 
induced an anti-apoptotic action by increasing the level of 
phosphorylated extracellular signal-regulated kinases (p-ERK 
1/2). Similarly, Chueh et al.[72] demonstrated that ouabain 
at low nM concentrations promoted cell proliferation in 
human prostate smooth muscle cells via a Ca(2+)-dependent 
mechanism and activation of the MEK-p42/44 MAPK 
pathway. Li et al.[73] investigated the effect of low-dose ouabain 
on the viability of rat renal proximal tubular cells. Ouabain 
(0.1 nM–10 nM) stimulated the proliferation of kidney 
cells; interestingly, these effects were abolished when slow 
calcium oscillations via the IP3R were prevented. Khundmiri 
et al.[74] observed that ouabain induced cell proliferation in 
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opossium kidney tubular cells involving calcium-dependant 
phosphorylation of Akt. This effect started at ouabain 1 nM 
and was maximal at 10 nM–100 nM, whereas at 1 μM, 
ouabain decreased Akt-phosphorylation. Wei et al.[75] revealed 
that spiral ganglion neurons exposed to neurobasal medium + 
10 nM ouabain had a much lower apoptosis index, increased 
Bcl-2 levels and, interestingly, longer dendrite growth as 
compared with neurons exposed to neurobasal medium 
only. De Rezende Correra et al.[76] demonstrated that ouabain 
significantly increased retinal ganglion cell survival, with a 
maximum at 3.0 nM, after 48 h in culture. The blockade of 
protein kinase C activity abolished the ouabain effect.

Effect on malignant cells
Lopez-Lazaro et al.[77] revealed that in three human cancer 
cell lines – TK-10 (renal), MCF-7 (breast) and UACC-62 
(melanoma) – the IC50 values for digitoxin (3 nM–33 nM) 
were within the concentration range (20 nM–33 nM) seen 
in the plasma of patients with cardiac disease receiving this 
glycoside. Specifically, digitoxin at 1 in 30 nM induced levels 
of DNA-topoisomerase II cleavable complexes similar to 
etoposide. Kometiani et al.[78] explored the mechanism of the 
growth inhibitory effects of DLC on the estrogen receptor-
negative human breast cancer cell line MDA-MB-435. 
Ouabain concentrations (10 nM and 100 nM) that caused less 
than 25% inhibition of the NKA pumping function activated 
Src kinase, stimulated the interaction of Src and Na/K-
ATPase with EGF-R, caused a transient and then a sustained 
activation of ERK1/2 and increased the expression of the cell 
cycle inhibitor p21Cip1. Winnicka et al.[79] observed reduced cell 
viability in another human breast cancer cell line (MDA-
MB-231) after applying ouabain, digoxin and proscillaridin 
A in nmol ranges. They confirmed that cardenolides induce 
apoptosis in MDA-MB-231 cells by increasing free calcium 
concentration and by activating caspase-3. Notably, they 
revealed marked differences in the potency, with proscillaridin 
A being the most active (IC50 48 ± 2 nM). Bielawski et al.[52] 
evaluated the role of cardenolides in MCF-7 breast cancer 
cells with special focus on topoisomerases. Both digoxin 
and ouabain inhibited topoisomerase II catalytic activity at 
100 nM. Proscillaridin A was an even more potent poison 
of topoisomerase I and II activity at 30 nM and 100 nM, 
respectively. Mijatovic/Kiss et al.[53] developed a semi-synthetic 
cardenolide, UNBS1450, with a markedly higher affinity to 
the NKA of diverse human cell lines than ouabain or digoxin. 
UNBS1450 at 10 nM–100 nM induced in A549 NSCLC 
cells a cell death process associated with dramatic cytoplasmic 
vacuolization due to increased lysosomal permeabilization. 
Remarkably, neither signs of apoptotic nor necrotic cell 
death were seen. McConkey et al.[47] demonstrated in two 
variants (Pro4 and LN4) of the human prostate androgen-
independent metastatic adenocarcinoma PC3 pro-apoptotic 

effects of cardiac glycosides (oleandrin, ouabain and digoxin). 
Concentration–response analyses revealed in both cell lines 
maximal responses of ouabain and digoxin at 100 nM. Huang 
et al.[80] also examined the cytotoxic effects of ouabain on the 
human prostate cancer cell line PC3. Low concentrations of 
ouabain (<10 nM) induced the increase of Par-4 expression 
and sensitized the cells toward cytotoxicity. Higher ouabain 
concentrations (<100 nM) induced a significant and time-
dependent loss of mitochondrial membrane potential 
(Deltapsim), a sustained production of reactive oxygen 
species (ROS) and a severe apoptotic reaction. Smith et al.[81] 
examined the relative abilities of oleandrin, ouabain and 
anvirzel to inhibit FGF-2 export from two human prostate 
cancer cell lines, DU145 and PC3. Oleandrin (0.1 ng/mL) 
produced a 45.7% inhibition of FGF-2 release from PC3 cells 
and a 49.9% inhibition from DU145 cells. Non-cytotoxic 
concentrations (100 ng/mL) of anvirzel produced a 51.9% 
and 30.8% inhibition of FGF-2 release, respectively, in the 
two cell lines. Li et al.[82] demonstrated that in a human gastric 
cancer cell line (MGC803), bufalin at 20 nmol/L induced 
M-phase cell cycle arrest, whereas at 80 nmol/L, it induced 
apoptosis via an increased Bax/Bcl-2 ratio and activated 
caspase-3. Remarkably, these distinct effects were correlated 
to a transient activation of the phosphatidylinositol 3-kinase 
(PI3K)/Akt signaling pathway and a complete inhibition, 
respectively. Xu et al.[83] analyzed the combined effects 
of ouabain (5 nM–1000  nM) and α1-siRNA on human 
hepatocellular carcinoma (HCC) cells, HepG2. The IC50 
of ouabain (at 48 h) in HepG2 cells was 100 nmol/L, and 
this concentration was shown to induce cell cycle arrest as 
well as apoptosis. Interestingly, silencing of NKA α1 isoform 
could enhance the anti-cancer effect of ouabain, in between 
others, by increasing the expression of p21Cip1	 .

High EDLC plasma concentrations  
(>100 nM–10 μM)
Effect on normal cells
Winnicka et al.,[71] dealing with the dual role of cardenolides in 
human fibroblasts, demonstrated that ouabain, digoxin and 
proscillaridin A only at relatively high concentrations (>300 
nM) increased intracellular Ca2+ concentration, activated 
caspase-3 and induced apoptosis in human fibroblasts. 
Similarly, the group of Chueh et al.[72] revealed cytotoxic effects 
(apoptosis) of ouabain on human prostatic smooth muscle 
cells only at high concentrations. Akimova et al.[84] examined 
the role of MAPK in the death of ouabain-treated renal 
epithelial cells. Exposure of C7-MDCK cells to 3 μM ouabain 
led to phosphorylation of p38 and consequent apoptosis, 
without a significant impact on phosphorylation of ERK and 
JNK. In ouabain-resistant smooth muscle cells from rat aorta 
and endothelial cells from human umbilical vein, no effect 
of ouabain on p38 phosphorylation was observed.
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Effect on malignant cells
Yeh et al.[85] demonstrated that digoxin, digitoxin and ouabain 
significantly inhibited the proliferation of human prostate 
cancer LNCaP, DU145 and PC3 cells at 1 µM or 10 μM. 
In contrast, normal control human glomerular epithelial 
cells showed no response to digitalis treatment at all tested 
doses. The discrepancy to the results of other authors (see 
above) remains to be clarified. Felth et al.[38] screened several 
cardiac glycosides in three human colon rectal cancer cell 
lines (HT29, HCT116 and CC20). Convallatoxin, oleandrin 
and proscillaridin A were identified as the most potent test 
compounds, with IC50 values ranging from 0.007 µM to 
0.55 μM. Interestingly, the combination of digitoxin and 
oxaliplatin exhibited synergism in the otherwise highly drug-
resistant HT29 cell line.

COMPARISON OF NA/K-ATPASE 
CHARACTERISTICS IN TUMOR VS. NORMAL 
CELLS

After summarizing these effects of DLC on different 
kinds of cell types in different experimental conditions, it 
becomes evident that the interaction between NKA and DLC 
follows a certain scheme according to the (E)DLC plasma 
concentrations [Figure 1]:
•	 At low EDLC plasma concentrations with no significant 

NKA inhibition, cell proliferation via Src/EGF-R/PI3K/
Akt and Raf/Ras/MAPK pathways is predominant, 
resulting in transient ERK1/2 activation, activation of NF-
kB and, in addition, recycling of signalosome members 
(α1, EGF-R).

•	 At low physiologic EDLC plasma concentrations with 
only partly (25%) NKA inhibition, cell cycle arrest and 
cell differentiation via the Src-EGFR-PI3K-Akt pathway 
are seen, resulting in sustained ERK1/2 activation with 
upregulation of p21Cip and, in addition, lysosomal 
degradation of signalosome members.

•	 At high physiologic EDLC plasma concentrations, mainly 
“classic” NKA inhibition occurs, while pro-proliferative 
effects are diminished or blocked.

•	 At high EDLC plasma concentrations (with >60% NKA 
inhibition), cell apoptosis is revealed involving high 
intracellular Ca2+, production of ROS and activation of 
caspase-3.

This “stepwise” reaction scheme of NKA–EDLC interaction 
seems to be valid for both normal as well as tumor cells. 
What are the underlying mechanisms driving different cells 
either into cell growth, cell differentiation, cell cycle arrest 
or apoptosis when they are exposed to the same (E)DLC 
plasma concentrations? While dealing with this question, we 
will show that the “physiologic” EDLC range of normal cells 

indeed correlates with a specific response pattern that shifted 
to a lower “tumor-specific physiologic” range in tumor cells. 
According to Schoner,[45] “the mechanism by which a normal 
cell or a tumor cell enters the pathway of differentiation and 
proliferation or apoptosis seems to be essentially the same 
for normal and malignant cells.” Therefore, the crucial 
difference is likely to be found at the cell membrane surface. 
With respect to the DLC (ligands) and their specific receptor 
(NKA), it is well established that a distinct combination 
of α- and β-subunits is crucial for the kind of activated 
response.[86-89] Not only have tissue-specific patterns of NKA 
isoforms[90-92] been identified but also a switch of isoforms 
during development from neonatal to adult tissues has been 
observed.[93-95] Crambert et al.[96] mention in a detailed analysis 
of the human NKA that the isozymes combined with the 
α1 isoform have the lowest Kd (i.e., the highest affinity for 
EDLC), the highest sensitivity toward K+ and Na+ and, hence, 
the greatest turnover, compared with other isozymes. These 
features reflect the “housekeeping role” of the ubiquitous α1 
subunit, as   “Na/K-ATPase with such characteristics should 
work at optimum rates under physiologic conditions but 
cannot respond to increased physiological demands.”[96] This 
implies that in case of transforming cells with, for example the 
“leaking-phenomenon” (see below), a “normal-active” NKA 
cannot respond to the needs of malignant cell transformation, 
like high intracellular K+- and glucose concentrations. 
Only after structural and/or conformational changes of the 
NKA (e.g., switch of isoforms) in the process of malignant 
transformation, can the pump provide this task, in between 
others, by developing hyperactivity.

Recent research has shed light on a new, still controversial 
role of α1 in cancer development and therapy. What seems 
to crystallize is the observation that in many different 
cancers (bladder, prostate, gastric), a reduced expression 
of the α1- and increased expression of the α3-isoform is 
present.[97-101] The meaning of these switches in α-isoforms 
in cancer progression is not yet fully understood. On the one 
hand, the α1 subunit is essential for maintaining the actin 
cytoskeleton[102] and cell-growth capacity of a cell, most likely 
as part of the “signalosome” formed in special caveolae.[66-68] 
Kiss et al. called the α1 subunit a new target in cancer therapy, 
especially in NCSLC and Glioblastoma.[59,60,103] UNBS1450, 
a semi-synthetic cardenolide, decreased in NSCLC A549 
cells both the NF-кB transcriptional activity and the DNA-
binding capacity of the p65 subunit.[50] In Gioblastoma cells, 
the same compound caused ATP depletion, disorganization 
of the cytoskeleton and, finally, autophagic cell death.[103] 
Newman et al.[42] pointed out that, in addition to its growth-
stimulatory effects, the α1 NKA isoform is associated with 
high intracellular gluthathione levels that prevent or delay 
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ROS-induced apoptosis. This protective feature is “logic” for 
normal cells considering their genetic program, which drives 
them to proliferate unless they are aged, or dysfunctional (by 
mutation or other DNA damages). Xie et al.[49] demonstrated 
elegantly in a recent study that the knockout for NKA α1 is 
sufficient to upregulate the cell cycle inhibitor p21Cip1, leading 
to cell cycle arrest. Ouabain at low doses (nM) induced NKA 
endocytosis in both a benign and two malignant cell lines but, 
however, whereas in normal cells a repletion of NKA α1 at the 
cell membrane was seen (involving the Src/PI3K/Akt/mTOR 
pathway), which correlated with cell growth stimulation, 
in both malignant cell lines the NKA α1 subunits were 
directed to lysosomal degradation, resulting in cell growth  
inhibition.[49] The authors admit that the reason for this 
opposite behavior still needs to be clarified and suggested 
differences, e.g. in the components of the signalosome 
(caveolin-1 and cholesterol). We will propose below that 
mutations or amplifications of the EGF-R (as often found in 
malignancies) may be crucial determinants of α1 intracellular 
pathways and, hence, of the cell’s fate. In summary, for the 
sake of tumor growth control, the down-regulation or another 
form of inactivation of the NKA α1 isoform is “reasonable” 
and, thus, an important goal in targeted therapies.

On the other hand, as described above, many cancers (i.e. 
pancreatic) have already down-regulated NKA α1- and 
upregulated α3 isoforms. Contrary to what we might expect 
from the recently mentioned data, these cancers are not less 
aggressive than those with α1 expression. The reasons for 
this down-regulation of NKA α1 in some cancer types are 
not fully evaluated; most likely, cytokines are involved. From 
all available data, we may assume that endogenous DLC are 
“already-at-work.” In other words, one and the same cancer 
cell could have a different NKA isoform pattern during its life 
span with high expression of α1 isoforms in early stages and 
low α1 expression in later stages – in favor of high α3 – when 
endogenous defense mechanisms, including stress hormones 
like EDLC, have entered the “battlefield.” In any case, a 
high α3/α1 ratio seems to render cancer cells more sensitive 
toward cell growth inhibition and/or apoptosis.[42,104] We may 
say in a literal sense that in cancer therapy, we continue or 
follow the path that nature itself has already chosen.

Concerning normal tissue, the NKA α3 subunit is 
predominant (α3/β1) in brain and neuronal tissue. 
As mentioned above, in cancer, the α3 isoform is often 
overexpressed. Shibuya et al.[100] analyzed the NKA isozyme 
expression in HCC. Interestingly, the expression levels 
of the NKA α3 isoform in HCC tissues were not only 
significantly higher than those in the accompanying non-
tumor tissues but also correlated significantly with the NKA 
activity. The authors suggested that overexpression of α3 

increases the Na/K-ATPase activity of HCC cells.[100] One 
possible interpretation is that in the program of malignant 
transforming cells, a signal for the need of more nutrition 
is translated in signaling cascades leading to a special NKA 
isoform pattern (α3/β2?) fulfilling these needs. But, indeed, 
the observed “correlation” between a3 expression and 
NKA activity could also represent a pure epiphenomenon. 
Remarkably, DLC not only have a high sensitivity to the 
human α3 subunit but also are able to downregulate the 
mRNA of the α3-subunit.[105] It is not yet clear whether the 
NKA α3 subunit per se in cancer cells has a specific tumor-
promoting effect, but there is evidence that the upregulation 
of α3 is promoted by the pro-inflammatory surrounding 
that is typical for tumor formations. Besides, it has been 
demonstrated that, on the other hand, α3 downregulation 
is driving human leukemic cells into cell differentiation.[106] 

Remembering what we said above about the downregulation 
of α1 “in favor” of α3, you get the impression that the “devil 
is driven out by the Beelzebub.” Moreover, it has been 
demonstrated that the α3 isoform can substitute α1 in the 
signalosome and induce downstream signaling pathways. 
Pierre et al.[89] used the baculovirus expression system to 
determine which subunits of the transporter are required 
for mediating signal transduction events, e.g. the activation 
of ERK1/2 by phosphorylation. Interestingly, Sf9 insect cells 
expressing the NKA α1/β1 isozyme showed under ouabain 
application a dose-dependent linear increase in p-ERK, with 
the highest response obtained at 100 µM and 1000 μM. In 
contrast, Sf9 cells expressing the α3/β1 isozyme showed a 
dual response pattern, with increase in p-ERK1/2 only up to 
0.1 μM and, afterwards, a decrease, reflecting an inhibitory 
effect of ouabain on cell growth-related pathways at higher 
concentrations.[89] This is in accordance with the known 
dual activity of DLC, and also supports our lower threshold 
theory in cancer (see below): the same ERK1/2-activating 
effect was obtained in α3/β1 (overexpressed in cancer) cells 
with 103–104-fold lower ouabain concentrations than in α1/
β1 cells. The studies and results from baculovirus expression 
systems are limited in so far that they work with rodent NKA 
isoforms, with α1 having a much lower ouabain sensitivity 
than α2, α3 and α4. In human cells, in contrast, all isoforms 
are similarly sensitive to ouabain.[96] Assuming a comparable 
mechanism for the induction of signaling pathways, the data 
from rodents may be applied to human beings.

With respect to the NKA β subunits, it is accepted 
that β1-isoform expression in malignant cells is often 
downregulated, as shown for human clear cell renal,[107] 
gastric[108] and bladder cancer.[97] This β1-downregulation 
has been suggested to be associated with the loss of tight 
junctions and epithelial polarity in cancer cells.[109] It was also 



1515

Journal of Carcinogenesis 2012,11:2 	 http://www.carcinogenesis.com/content/11/1/2

Journal of Carcinogenesis  
A peer reviewed journal in the field of Carcinogenesis and Carcinoprevention

demonstrated that decreased expression of the β1-subunit 
in poorly differentiated carcinoma cell lines correlated with 
increased expression of the transcription factor Snail, known 
to downregulate E-cadherin, with consequent transition 
from epithelial to mesenchymal phenotypes.[110] Finally, 
Rajasekaran et al.[111] showed that the levels of phosphorylated 
ERK 1/2 are inversely correlated with the β1 isoform levels 
in the tumors (MSV-MDCK), indicating a direct tumor-
suppressor function of β1 in epithelial cells. Blanco et al.[112] 
analyzed the function of different β isoforms, α3/β1 and α3/
β2. Using Sf9 cells, they mentioned that the accompanying  
β subunit isoform does not drastically affect the properties of 
the α3 subunit. Both NKA isozymes have similar turnover 
numbers, affinities for K+ and ATP and comparable high 
sensitivity to ouabain. Other authors claim that a switch from 
β1 to β2 may have an impact on tumorigenesis.[90] Here, 
further studies are needed, assuming that the downregulation 
of one isoform (e.g., β1) involves the upregulation of another 
one (e.g., β2). To summarize, in cancer, we often deal with 
overexpression of the α3 subunit and downregulation of the 
β1 subunit.

In malignant cells, not only the structure of the Na/K-
ATPase is changed but also its dynamics. Decades ago, it was 
discovered that kinetic changes in the Na/K-ATPase activity 
are already present at very early stages of tumorigenesis, even 
long before their morphologic manifestation.[32,113-115] Gonta-
Grabriec et al.[116] revealed that in both spontaneous and 
radiation-induced thymomas, 86Rb uptake, ATP hydrolysis 
and 3H-ouabain binding per cell were higher than in normal 
thymuses. These changes correlated highly with cAMP 
content and 3H-thymidine incorporation, taken as indicators 
of the proliferative activity typical for a pre-leukemic period. 
Moreover, NKA activity may vary during the lifespan of 
malignant cells. For example, a depolarization of the plasma 
cell membrane in chicken embryo fibroblasts, transformed by 
Rous sarcoma virus, was described, reflecting a reduced NKA 
activity, maybe shortly before apoptosis.[117] Similarly, Davies 
et al.[118] measured the kinetics of the NKA in distal colonic 
mucosa of CF1 mice 1 week after injections of the carcinogen 
1,2-dimethyhydrazine (DMH) over 4 weeks. The Vmax of 
the pump in pre-malignant mucosa was lower (55%–65% of 
control) for both sodium and potassium substrate activation, 
correlating with a 50% decreased NKA activity.

The reasons for these discrepancies are not yet clear. In 
malignant cell transformation, a “leakage phenomenon” was 
described causing a hyperactivity of the pump to compensate 
for the loss of potassium (Kaplan, 1978) and providing the 
tumor cell with nutrition necessary for the aberrant increased 
metabolism.[114] Whether and when exactly this hyperactive 
state is preceded (or followed) by a period of reduced pump 

activity is not known in detail. One possible scenario is that 
in a very early stage, the pump activity is reduced and only 
after, e.g. upregulation of the α3 isoform, the pump may 
switch to a hyperactive form (see: Shibuya). In general, basic 
kinetic properties of the NKA are modulated by a family of 
transmembrane spanning FXYD proteins that are colocalized 
with the NKA αβ subunits in the cell membrane.[119,120] In 
tumorgenesis, they seem to be upregulated; for instance, in 
NSCLC, recently, a high overexpression of FXYD5 (related to 
ion channel) was revealed correlating with increased activity 
(Vmax) of the pump, loss of TJ, increased cell permeability, 
impaired attachment and restricted cell movement.[120] Thus, 
the activity of the NKA might reflect the metabolic needs of 
a transforming cell, but the NKA that is embedded in the 
signalosome, is known to transmit signals independently of 
the pump’s activity.

Finally, analyzing the parameters at the cell membrane 
surface, we have to examine the neighborhood of the NKA. 
Considering that the NKA is closely interacting with other 
receptors at the cell surface (“signalosome”), it is reasonable 
to assume that a structural/functional change in one or more 
of these receptors will dramatically influence the kind of 
response to EDLC. This also helps to explain that malignant 
cells not only respond differently to DLC as compared with 
normal cells but also the differences in reaction between 
various cancer cell types.

The best analyzed receptor, EGF-R, is a tyrosinase kinase 
receptor, and its interaction with NKA in the signalosome is 
well established.[21,24,26] EGF-R kinase domain mutants found 
in non-small cell lung cancer (NSCLC) are constitutively 
active, a trait critical for malignant cell transformation. Chung 
et al.[121] stressed that aberrant trafficking of mutant EGF-R in 
NSCLC allows a preferential interaction with Src, a critical 
partner for EGF-R-mediated oncogenesis. Remarkably, 
mutant EGF-R, but not the wild-type EGF-R, show a 
perinuclear accumulation and colocalization with recycling 
endosomal markers such as Rab11 and EHD1 upon treatment 
of cells with endocytic recycling inhibitor monensin, 
suggesting that mutant EGF-Rs preferentially traffic through 
the endocytic recycling compartments. Medts et al.[122] aimed 
to test whether acute Src activation impacts on signalling and 
trafficking of non-liganded wild-type EGF-R. They found 
that thermoactivation caused rapid Src recruitment to the 
plasma membrane, concomitant association with EGF-R 
and its phosphorylation at Y845 and Tyr1173. Like low EGF 
concentrations, activated Src triggered EGF-R endocytosis 
via clathrin-coated vesicles and led to its sequestration 
in perinuclear/recycling endosomes with avoidance of 
multivesicular bodies and lysosomal degradation. The 
activation of Src and consecutive transactivation of (non-
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liganded) EGF-R by binding of ouabain to NKA is well 
documented.[21,68,123,124] We want to add that endogenous 
EDLC may be the most important natural activators of Src 
and transactivators of EGF-R, competing with its primary 
ligand EGF. So far, some of these cited data would speak 
rather in favor of a tumor-promoting effect of EDLC by 
(a) contributing to enhanced recycling of the membrane-
bound EGF-R and (b) by stimulating/activating the Src-
EGFR-PI3K/Akt/mTor and Raf/Ras/MAPK pathways. How 
can we explain these discrepancies to the anti-proliferative 
effects described in numerous recent reports? We assumed 
previously that the mutation status of EGF-R might be a 
relevant cofactor in determining the direction of DLC-
induced pathways. The above-mentioned aberrant trafficking 
of mutant EGF-R was observed in a setting where mutant 
EGF-R was stimulated by EGF, the natural ligand.[121] EGF 
binding induces auto-phosphorylation at Tyr1173 and Y845; 
ouabain, in contrast, has been shown to transactivate EGF-R 
by tyrosine phosphorylation at other sites. This could, at least 
partly, explain why the effects of DLC-transactivated EGF-R 
are different from EGF-stimulated EGF-R [Figure 2].

HYPOTHESIS

The facts presented above contribute to the hypothesis that 
the main reason for the observed phenomenon that tumor 
cells react differently to DLC as compared with normal cells 

is a lowered endogenous response threshold [Figure 1]. 
Above this threshold, tumor and normal cells reveal a similar 
response patterns toward (E)DLC, assuming no additional 
changes of intracellular molecules involved in the signaling 
cascades. In other words, tumor cells have their individual 
(tumor-specific) “physiologic EDLC ranges” starting at 
much lower (pmolar) EDLC concentrations as compared 
with normal cells:

Sub-threshold EDLC range of normal cells = “low-
physiologic” EDLC range of tumor cells.

The reasons for a lowered threshold in malignant cells could 
be (as discussed above), i.e.
•	 Tumor-specific NKA pattern (α3/β2) at the cell membrane 

surface leading to changes in NKA sensitivity and activity
•	 Aberrations of receptors of the signalosome, e.g. mutant 

EGF-R
•	 Other changes in the signalosome, e.g. decrease of 

caveolin-1 and cholesterol

We assume that under physiologic conditions (normal 
serum K+ and Na+ concentrations), when the EDLC are 
binding preferentially to α3 isoforms (see: “K+-antagonism” 
Crambert), tumor cells with overexpression of α3 become, 
naturally, the selective target of EDLC while normal cells with 
predominant α1 isoforms are “protected.” This effect may 
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Figure 1: The lower-threshold theory in cancer. The dual effects of endogenous digitalis-like compounds (EDLC) are demonstrated, 
which are, in principle, similar for normal and tumor cells, with the only crucial difference being that the response threshold of the 
tumor cells toward EDLC shifted to a lower (pmolar) EDLC range
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Figure 2: (a) Endogenous digitalis-like compounds (EDLC) and epidermal growth factor (EGF) induce different endocytotic trafficking 
pathways according to EGF-R mutation status and NKA isoforms. Transactivation of wt-epidermal growth factor receptor (EGF-R) 
by endogenous digitalis-like compounds induces endocytosis of the signalosome and causes recycling of the NKA α1 subunit and other 
signalosome members at the cell membrane via activation of PI3K/Akt/mTor. Activation of wt-EGF-R by EGF, in contrast, results 
in lysosomal degradation of the signalosome, (b) Transactivation of mut-epidermal growth factor receptor (EGF-R) by endogenous 
digitalis-like compounds induces endocytosis of the signalosome and causes its lysosomal degradation. Activation of mut-EGF-R by 
EGF, in contrast, results in aberrant endocytic trafficking and recycling of EGF-R, NKA α1/3 subunits and other signalosome members
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be even more pronounced in situations of sub-physiologic 
low EDLC plasma concentrations, e.g. in chronic stress 
conditions with relative exhaustion of the adrenal gland and 
inability to maintain normal EDLC plasma concentrations. 
Very low (pmolar) EDLF plasma concentrations (pmolar) 
are critical in the following aspects:
•	 First, they will affect exclusively malignant cells because 

the pmolar range lies below the response threshold for 
normal cells.

•	 Secondly, they will stimulate exclusively their proliferation 
because this is the main function of DLC close to or above 
the response threshold [Figure 1].

•	 Finally, they might trigger or support the above outlined 
dynamic switch in NKA isoforms with loss of β1 
(substituted by β2) and loss of α1 (substituted by α3), 
resulting in increased invasiveness and hyperactivity of 
the Na/K-ATPase.

To the best of our knowledge, there are no published 
data about the effect of pmolar DLC concentrations on 
malignant human cells. But, regarding the pro-proliferative 
effects of low DLC concentrations on non-malignant cells, 
one may expect a similar effect in the lowest “physiologic 
cancer” EDLC ranges. Here, we also want to mention the 
dual function of ERK1/2: transient activation leads to cell 
proliferation while sustained activation promotes cell cycle 
arrest and cell differentiation.[48] Low-dose ouabain has 
been shown to induce transient ERK1/2 activation,[28,125,126] 
whereas higher physiologic doses (≤100 nM) caused a 
sustained ERK1/2 activation with consequent upregulation 
of the cell cycle inhibitor p21cip.[78] Applying this concept on 

our theory, we may draw the conclusion that both normal as 
well as tumor cells react with transient or sustained ERK1/2 
activation according to their individual physiologic EDLC 
ranges [Figure 3].

SUMMARY OF EVENTS IN EARLY 
TUMORIGENESIS WITH RESPECT TO THE 
ROLE OF NKA AND EDLC

•	 Early changes of cell membrane composition and fluidity, 
induced either by biophysical factors of the environment 
(hypoxia, ROS), overexpression of oncogenes (Snail) or 
parts of the ion channels (FXYD), result in increased cell 
membrane permeability, downregulation of NKA β1, loss 
of tight junctions, aggravation of membrane permeability 
and loss of K+.

•	Downregulation of NKA α1 and upregulation of NKA α3 
by cytokines from an increasing pro-inflammatory tumor 
cell environment with compensatory increase in NKA 
activity result in restored intracellular K+ and nutritional 
components (glucose, proteins). Other factors, e.g. 
overexpressed Bcl-2, may contribute to a hyperactivity of 
the NKA.

•	High intracellular K+ concentrations promote cell 
proliferation and also transformation by stimulating the 
expression of oncogenes (c-myc, c-fos).

•	High intracellular glucose concentrations enhance 
excessive cell growth, especially when the tumor cell 
switches to aerobic glycolysis (Warburg effect).

•	 At this point – under normal conditions – upregulation 
of endogenous defense mechanisms, including the HPA 

a NKA a1/b1 + wild-type EGF-R = normal cell b NKA a3/b2 + mutant EGF-R = tumor cell
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system with the EDLC, help to re-balance the NKA 
isozymes and NKA amount at the cell surface membrane 
and trigger signal cascades leading to cell cycle arrest and 
apoptosis.

•	 In case of a deregulated HPA function (de-sensitization) 
with pathologic low EDLC supply from the adrenal gland, 
a breakdown of normal cell stability and integrity occurs, 
with further acquisition of malignant features (loss of 
adherence, increased invasiveness) and predominance 
of pro-proliferative effects via EDLC-NKA-Src-EGF-R 
interaction on tumor cells.

OUTLOOK: PRELIMINARY RESULTS–
FUTURE AIMS

Future clinical studies are necessary to verify this low 
threshold phenomenon and its tumor-promoting effect 
in situations of reduced EDLC plasma concentrations. A 
first step would be to analyze the effects of pmolar DLC 
concentrations on different cancer cell lines. A second step 
could include analyzing EDLC plasma concentrations of 
cancer patients at first diagnosis as compared with healthy 
persons, the NKA isozyme profile and NKA activity in the 
tumor tissue of these cancer patients correlated to known 
markers of tumor aggressiveness and the mutation status of 
the EGF-R. Furthermore, in order to verify the concept of a 
deregulated HPA axis (“De-sensitization”) as a cornerstone in 
tumorigenesis, it is warranted to evaluate, in between others, 
in the same patient and in control groups, the responses to 

acute stress (TSST) of both DLC and cortisol and to analyze 
their correlation.

We put forward the hypothesis that the ratio of these two 
adrenal stress hormones (DLC/cortisol) is prognostically 
relevant, rather than their absolute plasma/serum 
concentrations.

Here, we have to consider two controversial issues: first, the 
available data about physiologic EDLC plasma concentrations 
are limited and quite variable due to different methods and 
protocols[127-130] [Table  1]. Second, the intracellular signaling 
cascades described in recent studies were often initiated by 
ouabain concentrations several orders of magnitude higher 
than the measured human plasma concentrations of putative 
endogenous ouabain. Hansen draws the conclusion that 
there is “No evidence for a role in signal-transduction of 
Na+/K+-ATPase interaction with putative endogenous 
ouabain.”[131] But, remembering that many of the studies used 
tissues from rodents with a known ouabain-insensitive α1-
isoform of the NKA, we may assume that in human tissue, 
the signaling pathways altogether are triggered at lower DLC 
concentrations.

In a pilot study, we aimed to analyze in healthy volunteers (n = 
15) the plasma EDLC concentrations in correlation to cortisol 
(derived from saliva) by performing the mental stress test 
(TSST). For the first time, four specific responses (“cluster”) 
of EDLC to stress exposure were revealed [Figures 4a–d]. 
After establishing the EDLC cluster in healthy individuals, we 
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analyzed the saliva cortisol concentrations corresponding to 
each of these EDLC clusters. We also discovered four distinct 
cortisol response patterns, but, interestingly, not always in 
positive correlation to EDLC [Figures 4a–d]. These results 
support our hypothesis that a dysbalance in EDLC/cortisol 
synthesis and secretion under prolonged stress exposure with 
inner “competition” may result in individually different risk 

patterns for cancer development (see: “EDLC cluster type 3”).

In another preliminary trial (Registration ID NCT00310882), 
we analyzed EDLC plasma and cortisol serum concentrations 
in breast cancer patients (n = 22) at the time of first diagnosis 
compared with patients with a benign breast disease  
(n = 10) as the control group. A significant positive 
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Figure 4 (a–d): Individual endogenous digitalis-like compounds “cluster” in response to mental stress (TSST) and their correlation 
to cortisol. (a) Endogenous digitalis-like compounds (EDLC) cluster Type 1 is characterized by normal baseline levels, a rapid and 
marked increase shortly (10’) after the stress test and a similar rapid and marked decrease afterwards. Cortisol in EDLC cluster Type 
1 is characterized by normal baseline levels, a moderate increase shortly (10’) after the stress test, a plateau phase and a return to 
baseline at 45’. The correlation to EDLC is moderate (r = 0.63), but not significant, (b) Endogenous digitalis-like compounds (EDLC) 
cluster Type 2 is characterized by rather low baseline levels and a slow but continuous rise after the test (up to 45’). Cortisol in EDLC 
cluster Type 2 is characterized by normal baseline levels and a continuous increase starting shortly (10’) after the stress test, with a 
high peak at 20’. The correlation to EDLC is strong (r = 0.86), but not yet significant, (c) Endogenous digitalis-like compounds (EDLC) 
cluster Type 3 is characterized by very high baseline levels, a rapid and marked decrease shortly after the test (10’) and remaining 
low to normal levels. Cortisol in EDLC cluster Type 3 is characterized by normal baseline levels, a rapid and quite marked increase 
shortly (10’) after the test and a slow decrease afterwards. Interestingly, there is a strong inverse (r = - 0.90) and significant (P = 0.042) 
correlation to EDLC, (d) Endogenous digitalis-like compounds (EDLC) cluster Type 4 is characterized by low to normal baseline 
levels that do not rise after the test but remain all the time in the same range. Cortisol in EDLC cluster type 4 is characterized by 
extreme high baseline levels and a stepwise decrease starting shortly (10’) after the stress test. The correlation to EDLC is only weak 
(r = - 0.12) and not significant
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c d

Table 1: DLC and OLC plasma concentrations in human beings
Protocol  -  compound Plasma concentration (nmol/L) Ref.

Healthy persons, 15’ exercise, OLC Rest : 2.5 ± 0.5 nmol/L ; exercise : 86 ± 27.2 nmol/L 127

Critical ill patients,  OLC 3.59 ± 1.43 nmol/L vs. control 0.38 ± 0.31 nmol/L 128

Healthy persons, OLC 0.09 ± 0.009 nmol/L 129

Patients cardiac insufficient, DLIS 0.55 ± 0.44 nmol/L (range 0.26 – 1.52 nmol/L 130

Normotensive patients, EDLF Basal med. 0.89 nmol/L; after ACTH med. 1.83 nmol/L 12

OLC = Ouabain-like-compounds; DLIS = Digoxin-like-immunoreactive substances; EDLF = Endogenous digitalis-like-factors
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correlation between EDLC and cortisol was seen in the 
control as well as in patients (rs = 0.7, P = 0.05), but only in 
cases of normal plasma/serum concentrations of both stress 
hormones [Figure 5a]. Interestingly, in breast cancer patients 
with very low EDLC plasma concentrations (<0.1 nmol/L), 
a significant inverse correlation (rs = - 0.9, P = 0.03) was 
observed [Figure 5b]. This is in accordance with our previous 
findings and supports our hypothesis that high “tumor-
promoting” cortisol concentrations are maintained under 
chronic stress at the expense of “tumor-protecting” EDLC.

CONCLUSION

Assuming a lower threshold of malignant cells toward EDLC, 
it becomes evident that very low EDLC plasma concentrations 
due to an exhausted HPA system put an individual extremely 
at risk to develop cancer. It remains a challenging task to 
analyze in individuals their stress hormone response patterns 

and to investigate and develop tools to rebalance disturbed 
EDLC/cortisol concentrations – e.g., by physical (exercise) 
and mental (hypnosis, meditation) methods. This task should 
be started as early as possible in childhood to avoid the 
development of hormonal dysregulation and to strengthen 
the individual’s self-defense mechanisms against cancer.
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Figure 5: (a) Positive correlation between endogenous digitalis-
like compounds (EDLC) and cortisol in patients with benign/
malignant breast disease. This correlation was only observed 
in patients with physiologic plasma EDLC (>0.1 nmol/L) and 
serum cortisol concentrations (r = 0.7, P = 0.05),  (b) Inverse 
correlation between endogenous digitalis-like compounds 
(EDLC) and cortisol in patients with breast cancer. This negative 
correlation was observed only in cancer patients with subnormal  
(<0.1 nmol/L) plasma EDLC concentrations (r = -0.9, P = 0.03)
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