Chemoprevention of prostate cancer: Natural compounds, antiandrogens, and antioxidants – In vivo evidence

Nur Özten-Kandas, Maarten C Bosland
Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA.

DOI: 10.4103/1477-3163.90438

ABSTRACT

Prostate cancer is the leading non-skin malignancy detected in US males and the second cause of death due to male cancer, in the US. Interventions with drugs or diet supplements that slow down the growth and progression of prostate cancer are potentially very effective in reducing the burden of prostate cancer, particularly if these treatments also prevent the de novo development of new prostatic malignancies. Challenges to identify efficacious agents and develop them for chemopreventive application in men at risk for prostate cancer have included uncertainty about which preclinical models have the ability to predict efficacy in men and lack of consensus about which early phase clinical trial designs are the most appropriate and cost-effective to test promising agents. Efficacy studies in animal models have identified several agents with potential chemopreventive activity against prostate cancer, but few of these findings have been translated into clinical trials. This article identifies some of the major issues associated with prostate cancer chemoprevention research and summarizes the most significant current results from animal efficacy studies and human clinical prevention trials. This summary focuses on: (1) Naturally occurring agents and compounds derived from such agents, including green tea and its constituents, silibinin and milk thistle, and genistein and soy, (2) chemoprevention drugs including agents interfering with androgen action, and (3) antioxidants such as selenium, vitamin E, and lycopene. The general lack of activity of antioxidants is discussed, followed by considerations about translation of preclinical chemoprevention efficacy data, focusing on dose, form, bioavailability, and timing of administration of the agent, as well as discussion of study design of clinical trials and the predictive ability of preclinical models.

Keywords: Animal models, antioxidants, chemoprevention, clinical trials, natural compounds, prostate cancer.