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Abstract
Advances in rationally targeted therapeutics over the last decade have transformed the clinical care of 
advanced kidney cancer. While oncologists consolidate the gains of the wave of new agents, comprising a 
panoply of anti‑vascular endothelial growth factor multi‑targeted tyrosine kinase inhibitors and inhibitors of 
the mammalian target of rapamycin (mTOR), there is an increasing sense that a plateau has been reached 
in the short term. It is sobering that all currently approved targeted therapies have not yielded durable 
remissions and remain palliative in intent. In the context of recent insights in kidney cancer biology, we review 
promising ongoing and future approaches for kidney cancer therapeutics aimed toward forging new paths 
in the systemic management of renal cell carcinoma. Broadly, candidate agents for such innovative strategies 
include immune check‑point inhibitors, anti‑cancer stem cell agents, next‑generation anti‑vascular endothelial 
growth factor receptor and anti‑mTOR agents as well as more investigational agents in the preclinical and 
early clinical development settings.
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INTRODUCTION

Advances in targeted therapy has wrought a transformation 
in the clinical care of metastatic renal cell carcinoma (RCC), 
with the US Food and Drug Administration (FDA) 
approval of a series of agents active against the vascular 
endothelial growth factor (VEGF) and mammalian target of 
rapamycin (mTOR) pathways over the last decade, including 
sorafenib,[1,2] sunitinib,[3] bevacizumab,[4] temsirolimus,[5] 
everolimus,[6,7] pazopanib[8,9] and axitinib.[10,11] With the 
benefit of several years of clinical experience, it is recognized 

that while these agents clearly represented useful advances 
over traditional interferon‑based therapies, none of these 
new agents have demonstrated durable long‑term complete 
remissions in metastatic RCC, as has been possible in 
about 7% of individuals using high‑dose interleukin (IL)‑2 
infusions.[12] Further, newer agents have generally shown 
only marginal benefits over the established predecessors in 
the same drug classes, raising concerns about a dearth of 
innovation. The maturation of this approach is represented 
through increasing discussions over optimal sequences 
and combinations of such therapies. The identification of 
novel therapies is therefore of interest for transcending 
the current therapeutic plateau. We review here recent 
insights on both clinical and laboratory fronts, focusing 
on new directions in rationally designed targeted therapy, 
including targeted immunotherapy. Given the importance 
of developing new directions beyond the current state of 
the art of management, this review will favor discussions 
of efficacy over toxicity.
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BIOLOGY

Epithelial RCC is a heterogeneous disease comprising multiple 
entities. Several major histological subtypes are recognized, 
including clear cell renal cell carcinoma (ccRCC) (~75%), 
papillary RCC (~15%) and chromophobe RCC (5%), with 
mixed tumors also being commonly seen. Most recently in 
late 2013, the International Society of Urological Pathology 
proposed the Vancouver Classification of Renal Neoplasia[13] 
recognizing rarer variants such as tubulocystic RCC, 
acquired cystic disease–associated RCC, clear cell (tubulo) 
papillary RCC, the MiT family translocation RCCs (in 
particular t (6;11) RCC) and hereditary leiomyomatosis RCC 
syndrome–associated RCC. Each individual entity has distinct 
germline and somatic genetic and molecular expression 
programs,[14] serving as a potential basis for developing 
precision medicine guided approaches to diagnostic and 
therapeutic. We review here several key biological insights 
in the last 5 years which are likely to underpin upcoming 
investigational drug development for RCC.

Progress in genetics
The key insight for ccRCC biology was the identification of 
germline von Hippel‑Lindau (VHL) mutations underpinning 
the VHL syndrome, a hereditary multi‑tumor syndrome in 
the early 1990s,[15] and the corresponding identification of 
somatic VHL mutations in sporadic ccRCC. Long recognized 
since the 19th century, the myriad manifestations of VHL 
syndrome included ccRCC, craniospinal and ophthalmic 
hemangioblastoma, pheochromocytoma, pancreatic 
and renal cysts. VHL is regarded as a gatekeeper gene of 
ccRCC[16] in view of its relatively high somatic mutation 
prevalence (30‑60%) in ccRCC and the existence of somatic 
mutations in non‑malignant renal cysts adjacent to the 
tumor. Over 90% of ccRCC tumors show loss of one arm 
of chromosome 3p, resulting in allelic loss of VHL. pVHL 
mediates the ubiquitination‑mediated pathway of hypoxia 
inducible factor (HIF) degradation, with mutant pVHL 
forms resulting in excess HIF and consequently, upregulated 
angiogenesis and glucose transport. While each of these 
downstream pathways is of therapeutic interest, angiogenesis 
inhibition in RCC has taken center stage since 2006 with 
the demonstration of clinical efficacy of tyrosine‑kinase 
inhibitors and monoclonal antibodies in advanced RCC.

Several other germline alterations have been implicated in 
RCC (MET activating mutations in hereditary papillary 
RCC, FH mutations in hereditary leiomyomatosis‑RCC 
syndrome, FLCN mutations in Birt‑Hogg‑Dube syndrome), 
but unlike VHL, these germline mutations are rarely 
identified in sporadic tumors. Hence, whereas it is commonly 
assumed that similar pathways are dysregulated in sporadic 

renal tumors, it is less clear that therapeutic strategies aimed at 
these genetic alterations and downstream pathways represent 
an optimal strategy.

In recent years, next‑generation sequencing techniques 
have provided further insights into the genetics of RCC, 
highlighting several key biological themes through 
identification of somatic mutations of genes involved in 
sporadic RCC, particularly ccRCC. Notably, high frequencies 
of truncating somatic mutations in genes involved in 
chromatin modification have been demonstrated in several 
studies.[17‑19] In particular, involved genes included histone 
modifying genes PBRM1, SETD2, KDM5C, KDM6A and 
BAP1,[20,21] and genes involved in the ubiquitin‑mediated 
proteolysis pathway.[21] PBRM1 encodes the BAF180 protein, 
a subunit of the SWI/SNF complex which targets chromatin. 
BAP1 encodes for BRCA1 associated protein‑1, which is 
involved in histone deubiquitination. This body of work 
has been received with significant interest as animal models 
have by and large been unable to directly recapitulate the link 
between VHL mutation and carcinogenesis,[22] suggesting that 
additional genetic “hits” are required for renal carcinogenesis 
to occur. In the above studies, deoxyribonucleic acid (DNA) 
repair has also been identified as a possible theme in ccRCC, 
with mutations identified in PMS1, WRN and NBN, which 
are genes encoding DNA repair enzymes. It is expected that 
over the next few years, the molecular pathways dysregulated 
by these recently discovered somatic mutations will be 
unraveled.

Additional recent comprehensive molecular characterization 
studies of ccRCC have been conducted in the USA[23] 
and Japan,[24] integrating techniques such as whole‑exome 
sequencing, whole‑genome sequencing, ribonucleic 
acid (RNA) sequencing, array‑based expression, 
micro‑RNA profiling and methylation analyses. These 
have generally confirmed the findings of the earlier 
next‑generation sequencing studies, but several themes were 
in addition highlighted, including recurrent mutations of 
PI3K‑AKT‑mTOR pathway; expression studies demonstrated 
metabolic derangement in aggressive ccRCC where genes 
involved in the pentose phosphate pathway and the glutamine 
pathway were overexpressed, with down regulation of 
genes expressed in the tricarboxylic acid cycle. The Japanese 
group additionally identified hotspot TCEB1 mutations in 
a small proportion of samples (8/240) mutually exclusive 
with VHL mutations. These mutations prevented elongin 
C‑pVHL binding, with consequent HIF accumulation. While 
translation into therapies will take time, these insights into 
novel biological themes will certainly serve as the foundation 
for a fruitful clinical research program aimed at identifying 
newer therapeutic approaches.
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Tumor heterogeneity and single cell analysis
Recent landmark articles studying tumor heterogeneity have 
provided considerable insight into the complex architecture 
of ccRCC. The presence of intratumor heterogeneity has 
been elegantly and directly demonstrated using spatially 
separated samples obtained from primary and metastatic 
RCC tumors,[25] as well as through single cell analysis using 
the high throughput sequencing approaches.[26] Practically, 
this work provides important guidance on therapeutic 
failure through intratumor heterogeneity – in essence, 
given the variation of mutations spatially and between cells, 
the sobering concern that rationally targeted therapy based 
on targeting mutant pathways in the cancer cell will be 
fundamentally limited in curative potential is a real problem 
that has to be confronted. From a more basic point of view, 
these studies showing extensive intratumor heterogeneity 
as well as convergent phenotypic mutational evolution 
highlight that most next‑generation sequencing approaches 
today utilizing bulk tissue may underestimate the diversity 
of mutations and expression profiles within a single tumor. 
It therefore provokes the question whether approaches that 
indirectly target cancer through tumor microenvironment or 
the immune system may have superior outcomes; certainly 
the observation that high‑dose IL‑2 is of curative potential 
in metastatic RCC[12] supports this idea.

Cancer stem cell markers
The CSC hypothesis suggests that tumors are sustained by a 
subpopulation of cells, known as CSCs or tumor‑initiating 
cells, which are able to initiate and renew tumor recapitulating 
the tumor of origin.[27] In ccRCC, a putative marker CD105, 
also known as endoglin, has been reported to distinguish a 
rare subpopulation of cells that exhibit CSC properties.[28,29] 
These CD105‑positive cells demonstrate clonal growth, 
express stem cell markers and are able to recapitulate 
tumors in immunosuppressed mice. Importantly, these 
cells release microvesicles that are proangiogenic and 
enhance lung metastases, suggesting a role in the formation 
of the pre‑metastatic niche.[30] IL‑15 has been identified as 
a possible agent to target these cells for differentiation.[31] 
Other markers have been investigated as putative markers for 
CSCs, including CD133,[32] and the side population using the 
Hoescht 33342 dye efflux study,[33] but these have not reliably 
demonstrated CSC properties. Overall, it is suggestive that 
CD105 may be of potential value as a novel target though 
there are potential concerns of off‑target effects.

THERAPEUTIC STRATEGIES

Many new agents are being evaluated for the treatment 
of metastatic RCC, which may be broadly and somewhat 
arbitrarily classified into “canonical” and “emerging” 

approaches, depending on whether the agent has activity 
in previously established biological pathways of RCC 
management. Canonical approaches would include small 
molecule tyrosine kinase inhibition, with special focus on 
the VEGF and PDGF pathways, vascular endothelial growth 
factor receptor (VEGFR) blockade and mTOR inhibition. 
Emerging approaches would include agents at the preclinical 
and early clinical stages focused on novel pathways in RCC. 
Clinical trials that are currently open are summarized in 
Table 1.

Canonical approaches
A slew of tyrosine kinase inhibitors
There have been an abundance of anti‑VEGFR small 
molecules approved for RCC therapeutics, including 
sunitinib,[3] sorafenib,[1] pazopanib[9] and axitinib.[11] Indeed, 
while there are some differences in terms of toxicities between 
the agents in clinical practice, there has been little evidence 
to suggest clear advantages in efficacy, with pazopanib being 
most recently demonstrated to be non‑inferior to sunitinib in 
terms of survival in the first‑line management of metastatic 
RCC.[34] It is not clear that comparisons of differences in 
survival between Phase 3 trials are meaningful for deriving 
information on efficacy. While comparison studies are useful 
to guide daily practice, it is also true that such trials of drugs in 
the same class are unlikely to yield major concrete gains based 
on the current state of the art. Currently, many such agents 
are being investigated in Phase II and III trials, including 
dovitinib, tivozanib, cedirafenib, regorafenib, vandetanib 
and more. In what may be a herald for the future for 
Phase III trials for agents in this class, tivozanib was recently 
rejected by the U.S. FDA for concerns over overall survival 
relative to sorafenib,[35] and dovitinib failed to demonstrate 
progression‑free survival over sorafenib.[36] It may be noted 
that chemical modification through drug encapsulation may 
be an interesting strategy to modify the properties of drugs, 
including efficacy and toxicities, allowing for a more favorable 
biodistribution. While liposomal formulations of cytotoxics 
such as doxorubicin and paclitaxel are commonly used in 
the clinical practice, similar methods for the TKIs are still 
in development,[37] and outcomes in the human setting have 
not been established.

Anti‑VEGF/VEGFR blockade
Bevacizumab was the first in the class of anti‑VEGFR 
monoclonal antibodies to be approved for use in metastatic 
RCC in combination with interferon.[38] Several other related 
agents are under investigation, including ziv‑aflibercept (a 
soluble decoy receptor that binds to VEGF) and ramicirumab (a 
fully human IgG1 mAb targeting VEGFR‑2) are currently 
under evaluation in Phase II studies (NCT00357760 and 
NCT00515697).[39]
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The many splendored PI3K‑AKT‑mTOR pathway
The molecular signaling pathway of PI3K/AKT/mTOR[40] 
has been regularly implicated in RCC, where most recently, 
recurrent pathway mutations have been identified in 
comprehensive next generation sequencing studies as described 
above.[23,24] Of interest, it should be noted that in the Japanese 
analysis,[24] although 26% of cases had mutations involving the 
PI3K‑AKT‑mTOR pathway, the most commonly mutated 
gene in this pathway mTOR had only a mutant prevalence 
of 5.7%. In addition, other than the known tumor suppressor 
genes (PTEN, tuberous sclerosis complex 1 [TSC1] and 
TSC2), the remaining mutations in other genes were not 

truncating in nature. The canonical pathway is activated by 
the binding of growth factors/ligands such as insulin‑like 
growth factor or fibroblast growth factor (FGF) to their 
respective receptors leading to the recruitment of PI3K. This 
initiates a cascade of events starting with the conversion of 
phosphatidylinositol‑4,5‑phosphate (PIP2) to PIP3 which 
in turn activates AKT. Activated AKT indirectly activates 
mTOR through a phosphorylation of a number of targets 
downstream. Once activated, mTOR affects cell growth, 
proliferation, angiogenesis and metabolism.[41] mTOR 
exerts its effects through 2 different multiprotein signaling 
complexes, mTOR complex 1 (mTORC1) and mTOR 
complex 2 (mTORC2).[41] mTORC1 is activated by the 
inhibition of TSC2, which subsequently activates ribosomal 
S6 kinase and eukaryotic initiation factor 4E‑binding protein 
1 (4E‑BP1). In cancer cells, 4E‑BP1 phosphorylation 
results in translation initiation. Activation of the mTORC1 
downstream targets results in modulation of the activity of 
cell cycle regulating proteins like HIF, FGF, VEGF, STAT3, 
cyclin D and c‑Myc.[42‑44] Activated mTORC2 phosphorylates 
the hydrophobic motif of the AGC kinase family thereby 
inducing AKT activation.[45] Strong expression of various 
mTOR pathway proteins (PI3K, p‑AKT, p‑MTOR, p‑70S6K) 
is observed in RCC relative to non‑neoplastic kidney.[46,47] 
Beyond temsirolimus and everolimus, there have been a 
slew of second generation mTOR inhibitors that have been 
developed and are currently being evaluated in clinical trials. 
Therapies developed against this pathway target it at several 
levels. These include selective inhibitors of mTOR itself, 
AKT, PI3K individually or combination of mTOR/PI3K 
inhibitors. A number of new mTOR inhibitors like AZD8055 
have shown promising activity in pre‑clinical studies[48] and 
have entered Phase I trials.[49] Amongst the PI3K inhibitors, 
BKM120 has shown good preclinical activity and is being 
evaluated in by itself and also in combination with drugs 
like bevacizumab in metastatic RCC patients who had failed 
anti‑VEGFR therapy (NCT01239342). A dual inhibitor of 
PI3K and mTOR (NVP‑BEZ235) has demonstrated better 
in vitro antiproliferative effects compared to rapamycin[50] 
and is currently in Phase I/II trials (NCT01453595). All this 
activity suggests that the PI3K‑AKT‑mTOR pathway remains 
of high interest from the perspective of drug discovery, 
particularly in the context of patients who have developed 
resistance to anti‑VEGFR therapies,[51] consistent with the 
current fundamental insights afforded by next generation 
sequencing as described above.

Emerging therapeutics
Immune reinvigoration through programmed death‑1 and 
programmed death ligand‑1 inhibition
PD‑1 and PD‑L1 inhibitors are an exciting new class of 
agents targeting cancer cells via an immune modulated 

Table 1: Novel rationally targeted agents currently 
under investigation in RCC*
NCT 
number

Agent Phases Description

NCT01672775 AGS‑16C3F I Anti‑ENPP3 antibody‑drug 
conjugate

NCT01497821 AMG 172 I Anti‑CD70 antibody‑drug 
conjugate

NCT01283048 BKM‑120 I PI3K inhibitor
NCT01806064 TRC105 I Anti‑endoglin antibody
NCT01677390 SGN‑75 I Anti‑CD70 antibody‑drug 

conjugate
NCT01482156 BEZ235 I PI3K/mTOR kinase inhibitor
NCT01005797 Panobinostat 

(LBH589)
I Histone deacetylase inhibitor

NCT01480154 MK2206 I AKT inhibitor
NCT01548482 Trebananib I Angiopoietin 1 and 2 

neutralizing peptibody
NCT01391143 MGA271 I Anti‑B7‑H3 antibody
NCT01460134 CDX‑1127 I Anti‑CD27 monoclonal 

antibody
NCT01038778 Entinostat I/II HDAC inhibitor
NCT01582009 Panobinostat 

(LBH589)
I/II HDAC inhibitor

NCT00184015 Bortezomib I/II Proteosome inhibitor
NCT01762033 sonepcizumab 

(LT1009)
II Anti‑sphingosine‑1‑phosphate 

antibody
NCT00357760 Ziv‑ 

Aflibercept
II Soluble receptor that binds to 

VEGF‑A, VEGF‑B and PDGF
NCT01835158 Cabozantinib II c‑Met and VEGFR‑2 inhibitor
NCT01688973 Tivanitinib II c‑Met inhibitor
NCT01664182 Trebananib II Angiopoietin 1 and 2 

neutralizing peptibody
NCT01727089 TRC105 II Anti‑endoglin antibody
NCT01441765 CT‑011 II Anti‑PD‑1 antibody
NCT01793636 AZD2014 II mTOR inhibitor
NCT00566995 Vandetanib II VEGFR‑2 and EGFR inhibitor
NCT01524926 Crizotinib II ALK inhibitor
NCT01865747 Cabozantinib III c‑Met and VEGFR‑2 inhibitor
NCT01668784 Nivolumab 

(BMS‑936558)
III Anti‑PD‑1 antibody

*Search on 28/9/2013 of clinical trials.gov requiring open, recruiting interventional 
trials of known status for “RCC” (286 hits) with subsequent manual curation. 
This list does not include trials that have closed. RCC: Renal cell carcinoma; 
mTOR: Mammalian target of rapamycin; HDAC: Histone deacetylase;  VEGF:  
Vascular endothelial growth factor; PD‑1: Programmed death‑1;  VEGFR‑2:  Vascular 
endothelial growth factor receptor‑2; EGFR: Epidermal growth factor receptor;  ALK: 
Anaplastic lymphoma kinase
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mechanism (“immune checkpoint blockade”).[52] The PD‑1 
pathway is an important tumor‑evasion mechanism, with the 
two principal components of the PD‑1 pathway comprising 
PD‑1 (CD279), an inhibitory receptor expressed on the 
surface of activated T cells, B cells and myeloid cells and 
PD‑L1, which is expressed on cancer cells. When PD‑1 
and PD‑L1 are bound in a complex, T cell proliferation and 
survival is inhibited. Conversely, PD‑1 blockade leads to 
auto‑reactive T cell formation.[53] PD‑L1 expression has been 
associated with poor prognosis in both primary and metastatic 
RCC.[54‑56] Thus, targeting either PD‑1 or PD‑L1 may 
stimulate the immune system and enhance tumor‑specific 
cytotoxicity of T‑cells. Currently, anti‑PD‑1 inhibition 
with nivolumab (BMS‑936558) is already being evaluated 
in a Phase III study in metastatic RCC (NCT01668784). 
The basis for this was derived from observations of durable 
responses for nivolumab in heavily pretreated metastatic 
RCC approximating 27%,[57] as well as early data showing 
reasonable safety profiles, even after long term continuous 
dosing.[58] Currently, PD‑L1 antibody activity is also being 
actively investigated, with potentially exciting outcomes. In 
two recent reports, durable responses (including complete 
responses) were also observed in metastatic RCC with PD‑L1 
antibody (MPDL3280A).[59,60] Potential tumor biomarkers of 
efficacy have been identified for anti‑PD‑L1 antibody such 
as PD‑L1 status and low IL‑17 expression. These biomarkers 
may provide guidance as to further mechanistic evaluation.[59] 
The continuous rather than bimodal expression of these 
proteins represents a challenge for PD‑L1 as a clinical‑grade 
biomarker.[56] Overall, toxicities of these agents seem fairly 
limited and these very exciting results show the significant 
potential for targeted immunotherapy to transform RCC 
management in the short term. A major area for future 
development may be the adjunctive use of stimulatory 
agents for anti‑tumor immunity, given the recent discovery 
of mechanisms of immune escape through PD‑L1 mediated 
immune down regulation.[61] Indeed, multiple studies are 
currently ongoing exploring combinations of these agents 
with dendritic cell vaccines (NCT01441765), tyrosine kinase 
inhibitors or ipilumumab (NCT01472081).[62]

Anti‑CSC approaches
The identification of CD105/endoglin as a potential CSC 
marker in ccRCC is an important advance,[28] and the biology 
of this has been discussed above. The evaluation of anti‑CD105/
endoglin antibodies in RCC is a logical extension of this work. 
A Phase II trial (NCT01727089) evaluating TRC105, a chimeric 
IgG1 monoclonal antibody that binds CD105 (endoglin), 
is currently recruiting patients with RCC. In a Phase I trial, 
dose‑limiting toxicities was essentially hypoproliferative 
anemia,[63] which is a likely off‑target effect arising from the 
expression of CD105 in hematopoietic stem cells.[64]

Anti‑angiogenesis as a common endpoint
Beyond anti‑VEGFR TKIs and antibody blockade, 
inhibition of other pathways is being considered toward a 
common endpoint of anti‑angiogenesis. Vascular disrupting 
agents (VDA) recognize and disrupt tumor blood supply by 
targeting dysmorphic endothelial cells and pericytes on the 
tumor vasculature. Compared to the anti‑VEGFR and mTOR 
inhibitors, VDAs exert a cytotoxic rather than cytostatic 
effect. Small molecule VDAs are either flavonoids or tubulin 
binding agents. An example of such a drug is BNC105, 
which is a tubulin polymerization inhibitor. A multicenter 
Phase I/II clinical trial testing the combination of BNC105 
and everolimus in the second‑line treatment of mRCC has 
been recently completed (NCT01034631).

Inhibition of the angiopoietin/TIE2 pathway through 
the use of agents such as trebananib (AMG 386) is 
also being considered both alone and in combination 
with other agents including sorafenib,[65] sunitinib and 
temsirolimus (NCT01548482). Currently, AMG 386 does 
not appear to improve progression‑free survival when used 
in combination with sorafenib versus sorafenib alone.[65]

The Notch pathway which mediates angiogenesis has 
been identified as another potential target in anticancer 
drug development. A Notch signaling pathway inhibitor, 
R04929097, is currently in use in a Phase I trial in mRCC 
patients that have failed anti‑VEGF therapy (NCT01141569).

Antibody drug conjugates
ADCs represent a novel method in the treatment of mRCC. 
Such conjugates have received significant attention since 
positive results in breast cancer were reported for TDM‑1,[66] 
a conjugate of the monoclonal antibody trastuzumab and 
the cytotoxic maytansine. These ADCs are composed of 
a monoclonal antibody that can bind to specific target 
receptors (antigens) on the RCC cell and a conjugated 
cytotoxic payload. The main target of this antibody is CD70 
that is expressed on these cells. An example of this drug 
antibody conjugate is MDX‑1203 which is conjugated to 
rachelmycin (CC1065) (prodrug), which exerts an alkylating 
action on adenine in dividing cells resulting in cell death.[67] 
This conjugate is currently under evaluation in advanced 
RCC patients (NCT00944905) and results are pending. 
Other anti‑CD70 agents currently being investigated include 
MDX‑1411 (NCT00656734) and SGN‑75 (NCT01015911).

Carbonic anhydrase IX targeting
Radio‑labeled antibodies are also being evaluated in 
mRCC patients, particularly through targeting of 
CAIX, a cell surface antigen. This cell surface antigen is 
highly expressed in RCC but is absent in normal renal 
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epithelium.[68] G250 is a murine monoclonal antibody 
that targets CAIX and a chimeric version of this antibody, 
cG250 has shown antibody dependent cellular toxicity 
against RCC cells in vitro.[69] This antibody has also been 
tested in preclinical trials in combination with interferon 
gamma with promising synergistic tumoricidal activity 
noted.[70] A Phase II study has been conducted,[71] and 
a study of cG250 conjugated to yttrium‑90 is currently 
ongoing (NCT00199875).

Histone deacetylase inhibitors
Of late a new class of drugs called histone deacetylase (HDAC) 
inhibitors have come to the forefront of cancer therapeutics. 
This was after the discovery that aberrant HDAC activity 
play an important role in carcinogenesis.[72] Its activity seems 
related to the recruitment of the BcL‑2 family of genes. 
HDAC inhibitors that have been tested in metastatic RCC 
include LBH589 (panobinostat) and entinostat. In a recent 
phase II trial of patients that have had at least one prior TKI 
or mTOR inhibitor, panobinostat was well‑tolerated but with 
no objective responses noted.[73]

Other candidate pathways
There are several candidate pathways of strong interest in 
RCC as identified in the pre‑clinical setting. Signal transducer 
and activator of transcription 3, also known as STAT3, is a 
transcription factor which in humans is encoded by the STAT3 
gene. It is involved in several signaling pathways that regulate 
cell survival and proliferation and it is aberrantly activated 
in RCC.[74] A STAT3 inhibitor (WP1066) has demonstrated 
antiproliferative activity in RCC cell lines and in vivo on 
murine xenografts.[75] Similarly, aurora kinases, oncogenic 
serine‑threonine kinases that regulate the cell cycle, are key 
regulators of mitosis and have been found to be overexpressed 
in RCC.[76] Preclinical work has demonstrated that inhibition 
of these pathways through VX680 (a pan‑aurora kinase 
inhibitor) similarly leads to significant cell death in RCC 
in vitro and in animal models, with additional anti‑angiogenic 
effects.[76]

CONCLUSION

The systemic management of RCC has matured in recent 
years, with the development of a slew of rationally targeted 
therapies focusing on inhibition of the VEGF and mTOR 
pathways. The primary therapeutic approach to metastatic 
RCC remains palliative in nature, with the notable exception 
of a limited subset of patients experiencing durable complete 
remissions with high‑dose IL‑2. Beyond consolidating past 
gains through improved combinations and sequencing of 
existing agents, several promising leads for rationally targeted 
treatment have opened‑up new directions for exploration 

and clinical investigation, with the hope of continuing to 
advance clinical care.
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