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Abstract
Prostate cancer is a leading cause of death among men in the United States, and currently early diagnosis and 
appropriate treatment remain key approaches for patient care. Molecularly prostate cancer cells carry multiple 
perturbations that generate malignant phenotype capable of uncontrolled growth, survival, and invasion-
metastasis to other organs. These alterations are acquired both by genetic and epigenetic changes in tumor 
cells resulting in the activation of growth factor receptors, signaling proteins, kinases, transcription factors and 
coregulators, and multiple proteases required for the progression of the disease. Recent advances provide 
novel insights into the molecular functions of these oncogenic activators, implicating potential therapeutic 
targeting opportunities for the treatment of prostate cancer.
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INTRODUCTION

Prostate cancer is a highly prevalent disease and leading cause 
of cancer related deaths in the Western World. National 
Cancer Institute (NCI) estimates that about ~240 890 
American men will be diagnosed with prostate cancer in 
2011 and approximately ~33 720 will die of the disease. It 
is the most prevalent tumor in men and despite increasing 
efforts at early detection, 10–20% of the cases present bone 
metastasis at diagnosis. Most men diagnosed with prostate 

cancer can survive the primary localized tumor; however, 
because of the widespread metastasis that are resistant to 
conventional treatment including improved surgical techniques, 
mortality rates remain extremely high. Development of prostate 
cancer is prevalently asymptomatic, and once symptoms are 
noticed, it usually implies an advanced disease stage. Metastatic 
dissemination of cancer cells consists of series of sequential 
interrelated steps that lead to spread of the disease to distant 
organs such as bone, lymph nodes, rectum, urinary bladder, 
and brain, which ultimately leads to death. So, it is critical to 
understand the mechanisms that drive prostate cells to become 
metastatic. Moreover, it is also important to diagnose the disease 
at an early stage so that proper therapy can be administered, for 
which we need a predictable biomarker. Thus, by understanding 
the molecular events in the pathogenesis of prostate cancer and 
detecting a reliable biomarker will offer improved diagnosis, 
prognosis, and therapy of the disease that will ultimately help 
us to eliminate prostate cancer. 
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Tumorous growth in prostate can either be benign or 
malignant. Benign, nodular, paraurethral hyperplasia of the 
prostate (BPH) is one of the most prevalent disease of elderly 
American men. BPH can develop due to hormonal imbalance 
due to altered testosterone level, or may be stimulated by 
testosterone or dihydrotestosterone. Several growth factors 
may play important role in regulating epithelial and stromal 
cells in BPH.[1] In the presence of hormonal imbalance, 
the expression of the growth factor receptors are altered, 
which leads to increased cellular signaling and stromal cell 
proliferation. Nodular hyperplasia of the prostate is due to 
increased proliferation of glandular-epithelial compartment, 
with simultaneous mesenchymal stromal cell proliferation. 
This may lead to the alteration of the stromal unit, with 
inversion of the proliferation compartment, shift of luminal 
cells, thereby development of adenomatous hyperplasia. 
If this develops in the peripheral part of the prostate 
gland, it is termed as prostatic intraepithelial neoplasia  
(PIN).[1] Histopathologically PIN is regarded as the precursor 
of prostatic adenocarcinoma. PIN exists with more than 
85% of cancer, and clinically it has a strong association with 
prostatic carcinoma.[2,3] A number of studies have identified 
differentially regulated genes that are expressed in neoplastic 
progression of prostatic progression. Differentially expressed 
genes are predicted to play key roles in prostate cancer 
development and may also serve as clinically useful biomarker 
for early detection and diagnosis. Although large sets of 
genes have been identified, few have been characterized in 
the molecular progression of the disease. In this review, we 
will focus on the advancements of crucial prostate cancer 
oncogenes, which have been established as potential target 
for therapy.

Growth factor receptors
Insulin growth factor 
A number of growth factors have been shown to be 
implicated in the development of prostate cancer. One of 
the most studied growth factors in the process of promoting 
oncogenesis in prostate cancer is insulin-like growth factor 
(IGF). Although the IGF functions as an endocrine hormone, 
being predominantly secreted by the liver,[4] it can also act as 
an autocrine and paracrine hormone, whose local secretion 
may be a possible stimulus for cell growth in neoplasms. 

IGF1 and IGF2 work via the same receptor, a transmembrane 
glycoprotein[5] with tyrosine kinase activity, IGF1R. 
Increased expression of IGF1 and IGF2 has been shown 
via immunohistochemistry to be a positive correlation with 
serum PSA over 10. Additionally, the same study discovered 
that IGF2 has a positive statistically significant correlation 
with Gleason’s score.[6] 

Epidemiologically, there is a significantly higher elevation 
serum concentration of IGF levels in patients with prostate 
cancer compared to normal.[7] The role of IGF in oncogenesis 
is evident through a number of different studies correlating 
decreased invasiveness with an inhibition of IGF. Remarkably, 
even the growth of metastatic prostate cancer tumor in the 
bone is inhibited by the administration of an IGF1 antibody, 
KM1468.[8] Reducing the hepatic production and secretion 
of IGF1 via disruption of growth hormone receptors 
significantly reduces the early carcinogenesis of prostate.[9] 

IGF availability in the serum is regulated in vivo by IGF 
binding protein 3 (IGFBP3).[10] Several cell lines of prostate 
adenocarcinoma (22Rv1, PC-3, and DU-145) display 
increases concentrations of IGFBP3 in a dose-dependent 
manner via treatment with 5-FU; however, a significant 
decrease in the growth of PC3 was found attributable to 
a decreased bioavailability of IGF1[11] although IGFBP3 
may play a role later in prostate adenocarcinoma migration, 
and cell-matrix adhesion in an IGF-1 independent  
mechanism.[12] It can also promote apoptosis in a poorly 
understood mechanism independent of IGF-1[13] making it 
debatable if the change in IGFBP3 levels really affected the 
cells in a IGF-1 independent or dependent manner. The 
significance of the role of IGFBP3 in regulating active IGF1 
can be seen epidemiologically in Korean men revealing that 
prostate cancer sufferers more likely had lower serum levels of 
IGFBP3. The epidemiology remains controversial however 
with a different study suggesting that increased serum levels 
of IGFBP3 or IGF1 to IGFBP3 ratio are not correlated with 
likelihood of prostate cancer.[14] 

IGF1 interacts with its respective intranuclear receptor, 
IGFR1. Through the receptor’s tyrosine kinase activity[15] 
several downstream signaling pathways are activated, 
including the phosphatidylinositol 3-kinase (PI3K), 
AKT, TOR, S6 kinase, and mitogen-activated protein 
kinase (MAPK) pathways, by which the antiapoptotic and 
proneoplastic effects of insulin like growth factor 1 function. 

IGF1R has been spotlighted as a major player in prostate 
carcinogenesis and a major player in possible pharmacologic 
interventions in prostate cancer. There is a plethora of data 
suggesting a significant relationship between the increased 
IGF1R activity and increased prostate carcinogenesis, while 
at the same time illustrating that inhibition of the pathway 
will result in the diminished tumor growth. Additionally, 
it has been shown that both IGF1R protein and mRNA is 
upregulated in primary prostate cancer, as opposed to benign 
prostatic hyperplasia.[16] 

Reducing the expression of IGF1R via antisense RNA retards 
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tumor growth of prostate cancer cells.[17] IGF1R may be an 
essential player in facilitating the continued activity of the 
androgen receptor, well after castration has occurred. It has 
been shown that the IGF pathway is capable of inducing 
the activation of the androgen receptor in the absence of 
androgens,[18] or in facilitating its translocation into the 
nucleus, without androgens, although this activation of 
androgen receptor may rely on the assistance of several 
other proteins such as beta catenin.[19] The IGFR pathway 
via its actions on the PI3K/AKT pathway phosphorylates 
the androgen receptor inhibitor Foxo1.[20] In addition to the 
direct stimulation of the androgen receptor in an androgen 
independent pathway, it is apparent that IGF1 pathway may 
also up regulate proteins that are also up regulated by the 
androgen receptor. One possible candidate protein is survivin, 
which is an antiapoptotic caspase inhibitor, which has been 
shown to be androgen dependent, but can be up regulated in 
the absence of androgens by the presence of insulin growth 
factor.[21] 

Although androgenic stimulation of the androgen receptor 
remains essential in stimulating growth of the prostate cells, 
it is important to note that it is possible for the prostate to 
continue having an activated androgen receptor, and tumor 
growth even following the lack of androgenic stimulation via 
castration. It has therefore been hypothesized that there must 
be some sort of androgen independent stimulation of the 
androgen receptor that may be at work in causing the prostate 
tumor growth. The IGF signaling pathway is a candidate 
pathway for this functionality. The inhibition of IGF1 
signaling by antibody to IGF1R following castration reduced 
prostate tumor growth much more in androgen-dependent 
cells than it did mice that underwent castration alone.[22] 
Although there may be a drop in IGF signaling immediately 
after castration, the IGF1 signaling pathway remains active 
throughout the course of the disease.[23] Additionally, IGF1 
signaling may also play an important role in migration 
and invasion in addition to encouraging proliferation and 
resistance against apoptosis through the possible stimulation 
of the metalloprotease MT1-MMP[24] and encouraging actin 
rearrangements in the cytoskeleton that may activate integrins 
and lead to the promigratory cell behavior.[25]

Wnt 
The Wnt signaling pathway is another major of oncogenic 
signaling pathway involved in the carcinogenesis of prostate 
cancer. It is apparent that the Wnt pathway is important in 
the preliminary development of the prostate.[26] The Wnt/B 
catenin pathway is an important player in prostate oncogenesis, 
particularly in giving tumor cells their invasiveness. The 
suppression of Wnt signaling by an inhibitor of the pathway, 
WIF1, has been shown to significantly reduce the size of 

tumors in addition to reducing MMP2 and 9 in PC3 cells[27] 
in addition to increasing the expression of the epithelial 
metalloprotease, MMP7[28] Foxa2, which may be important 
in the local invasiveness of prostate cancer is increased by the 
Wnt signaling pathway. To further highlight the relevance of 
the Wnt pathway on invasiveness of prostate adenocarcinoma, 
a study revealed that CamKII, which is a transducer in 
the Wnt pathway, increases cytoskeletal remodeling and 
cell motility[29] that may possibly facilitate future tumor 
invasiveness. A Wnt family protein, Wnt11, confers increased 
invasiveness for both LNCaP and PC3 cell lines.[30] 

Her-2/neu (ERBB2)
The Her2/neu protein is a notorious proto-oncogene that has 
been implicated in a number of different cancers, particularly 
in breast cancer and the target of a number of current and 
experimental therapies.[31] Her2/Neu is a transmembrane 
tyrosine kinase that is important in assisting differentiation 
and cell growth. Despite its major role in the diagnosis and 
treatment of breast cancer, Her2/Neu plays an important 
role in the understanding of prostate adenocarcinoma 
oncogenesis. Although Her2/Neu is not necessarily 
correlated with a Gleason’s score,[32] patients suffering from 
metastatic prostate cancer were more likely to have higher 
levels of serum Her2/neu versus those with nonmetatstatic 
or localized disease[33] suggesting that Her2/Neu may be an 
important marker for advanced disease[34] or clinically worse 
outcomes;[35] however, Her2/Neu expression does not seem 
to be related to the Gleason score of the biopsy.[36] 

Similar to the other major oncogenes discussed so far, Her2/
Neu is capable of activating the androgen receptor in the 
androgen independent stage. Her2/Neu can promote survival 
of LNCaP cells through the Akt pathway, even in the absence 
of androgens. Interestingly, this effect can be halted by the 
addition of Dn-Akt, an inhibitor of Akt.[37] Additionally, Her2/
neu can provide androgen independent activation of the AR 
via a pathway modulated by both MAPK and c-Jun,[38] which 
is also important in stabilizing the androgen receptor. This 
interaction between Her2/neu and the androgen receptor 
is regulated by an miRNA, miR-331-3p, the addition of 
which can inhibit both the downstream activation of PI3K/
Akt signaling, in addition to reducing the AR-regulated 
PSA expression.[39] Additionally, Her2/Neu can, via PYK2, 
help facilitate the cell adhesion that allows for the tumor’s 
metastatic potential.[40] Her2/Neu’s relationship with the 
AR, however, is not universally accepted as LNCaP cells 
have decreased AR mRNA in addition to decreased AR and 
AR regulated PSA.[41] 

Her2/Neu may also play an important role in the metastasis 
of prostate cancer into the bone. In patients with bone 
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metastases, Her2/Neu over expression is associated with a 
poorer prognosis.[42] As we have described previously, the 
receptor is also important in facilitating metastasis. The 
orthotropic transfection of Her2/Neu facilitates changes 
downstream that allow for the tumor’s cell’s increased 
metastatic capacity. A PC-3 cell line that was transfected 
with orthotropic Her2/Neu produced numerous metastases 
all over the abdomen, including the retroperitoneum 
and the kidney.[43] Molecularly, the Her2/Neu receptor is 
part of a signaling cascade that involves the downstream 
enhancement of Akt and MMP-9, whereby the cancer 
cell is allowed to penetrate the matrix and facilitate  
angiogenesis.[44] 

Epidermal growth factor receptor
Epidermal growth factor receptor (EGFR) is a receptor 
tyrosine kinase that is related to the ErbB2, and participates 
in several signaling cascade including Akt, MAPK, and 
STAT, whereby it plays an important role in tumor cell 
growth. Overexpression of EGFR is correlated with time to 
biochemical relapse[45] and the interference of EGFR with 
miRNA 28, does allow for increased apoptosis of prostate 
tumor.[46] Additionally, immunohistochemically speaking, 
higher association of EGFR was statistically correlated with 
a higher serum PSA. Additionally, the relevance of EGFR 
to prostate cancer oncogenesis can be further revealed by 
the fact that specimens with a diagnosis of Gleason’s scores 
above 7 were significantly more likely to have co-expression 
of EGFR with an association Her2, c-erb-2[47] 

There has been a plethora of studies regarding the targeting 
of EGFR in chemotherapeutics, in particular, the synthetic 
antibody Geftinib, which is currently marketed as an EGFR 
inhibitor for use in non small cell lung cancer. The knockout 
of EGFR via siRNA resulted in autophagosomes and in 
increased levels of calpain, a proapoptotic protein both of 
which are characteristic of apoptosis. Additionally, knocking 
down EGFR but not altering its tyrosine kinase activity 
made tumor cells more susceptible to adriamycin, which 
allowed for increased levels of caspase 3 and 7.[48] 

EGFR seems to display a rather complicated interaction 
with androgens and the androgen receptor. Normally 
androgens are responsible for the down regulation of EGFR. 
In the cancer cell, however, the introduction of androgens 
may increase the levels of EGFR mRNA, and antibody 
mediated inhibition of EGFR prevented androgen mediated 
proliferation, although this remains debatable as another 
study revealed that EGFR was shown to have increased 
ubiquitination and degradation following activation of the 
androgen receptor.[49]

Phosphoinositide-3 Kinase/AKT
Phosphoinositide-3 Kinase (PI3K) is a critical mediator of 
multiple oncogeneic signaling pathways. PI3K is activated 
by the receptor tyrosine kinases generating PI3, 4P2, and 
PI3,4,5P3 (PIP3), which acts as secondary messengers 
triggering downstream signaling events. Most important 
PI3K downstream targets include Akt family of serine-
threonine kinases, which are then recruited by PIP3 to the 
plasma membrane and phosphorylated by PDK1 kinase. 
Once phosphorylated, Akt is activated which then promotes 
cellular proliferation and survival by regulating several 
downstream targets. The most critical negative regulator of 
PI3K-Akt pathway includes PTEN, a phosphatase that has 
high specificity for lipid substrates.[50] In prostate cancer, 
PTEN is frequently lost resulting in hyperactive PI3K/Akt 
pathway promoting prostate cancer progression.

Somatic alterations in the PTEN gene have been identified 
in prostate cancer patients for both localized and metastatic 
disease. These include deletions, and inactivating missense 
and nonsense mutations in ~15% of primary tumors.[51] 
PTEN alterations are more common in metastatic cancers 
and studies have identified biallelic loss of PTEN in ~50% of 
metastatic hormone-refractory prostate cancer.[52] Genomic 
amplifications in AKT1 and AKT2 in prostate cancer are 
rarely found, however, loss of PTEN results in constitutively 
activated Akt which promotes tumor growth. Crucial 
downstream signaling cascade of PI3K/Akt include mTOR 
pathway that is deregulated by loss of function mutations in 
PTEN. Activated mTOR phosphorylates substrates critical 
for protein synthesis, including ribosomal subunit S6 kinase 
(S6K) and initiation factor 4E-binding protein 1(4E-BP-1) 
thereby activating protein translation and tumor growth.[53] 
Akt/mTOR-dependent stabilization of Hif1α transcription 
factor and increased expression of Hif1α target genes have 
been detected in PIN mouse models[54] that includes enzymes 
of the glycolytic pathway. 

We have identified a novel gene MIEN1 (previously referred 
to as C17orf37) highly overexpressed in prostate cancer, 
which modulates the Akt activity as a membrane bound 
adapter protein.[55] MIEN1 is post-translationaly modified 
by addition of prenyl groups that translocates the protein to 
the inner face of the plasma membrane.[56] Ectopic expression 
of MIEN1 activates Akt and cascades downstream signaling 
through NF-κB pathway upregulating expression of several 
migratory and invasive genes. MIEN1 may act as a scaffolding 
protein blocking PTEN binding to Akt; however, the exact 
mechanism is not known.

Targeting PI3K-Akt pathway to treat prostate cancer patients 
is an active area of research. Several small molecule inhibitors 
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have been developed that are currently undergoing clinical 
trials for prostate cancer therapy. mTOR inhibitor RAD001 
(everolimus) is currently under clinical trials for castration 
resistant prostate cancer (CRPC) patients either alone or in 
combination with gefitinib. A new mTOR inhibitor AP23573 
is currently in phase II clinical trials as a single agent treatment 
for CRPC patients. PI3K and Akt are also attractive drug 
targets for prostate cancer therapy, but despite serious efforts 
inhibitors targeting the kinase activity lack specificity.[57] 

Proteases
The MMPs and promigration
Like the Wnt pathway, the MMPs are essential in facilitating 
the invasiveness of prostate cancer. These proteins are 
important in the degradation of the extracellular matrix, 
whereby the invasive prostate cancer cells can metastasize to 
distant site throughout the body [Figure 1]. Additionally, this 
protease activity, not only allows for cell migration, but also 
plays a role in facilitating angiogenesis, whereby the tumor in 
provided with nutrition allowing its continued proliferation. 
In bone metastases, the prostate metastatic tissue might 
allow for angiogenesis via the MMP9 derived from  
osteoclasts.[59] As such, the metalloproteases are particularly 
important players later on in prostate cancer, when the cancer 
is most invasive. Some of the MMPs have a higher expression 
with higher Gleason’s scores. 

The targeting of the zinc proteases has become a 
major spotlight in possible future chemotherapeutic  
interventions.[60] Of the many different members of the 
homologous MMP family, MMP 2, 7, and 9 in addition to 

MT1MMP are the most relevant in terms of relevance in 
prostate adenocarcinoma metastasis. There is a particularly 
higher level of MMP9 expression in prostate cancer compared 
with other cancers. While the lack of MMP 2, 7, or 9 in 
CR2-Tag mice all can lead to reduced tumor vascularity, the 
dearth of MMP2 also conferred decreased lung metastasis 
and increased survival, while interestingly, the lack of MMP 9 
lead to increased perivascular invasion, in addition to reduced 
vessel size,[61] highlighting the unique functions that the 
different members of the MMP family have. Several of the 
major metalloproteases related to prostate adenocarcinoma, 
namely MMP 2, 9, and MT1MMP are inhibited by the DNA 
enzyme Dz13, which reduced tumor growth of PC3 cells.[60] 

MMP 9
MMP 9 is a major player in prostate adenocarcinoma 
invasiveness. Pathologically speaking, higher levels of matrix 
metalloproteinase 9 as revealed by DAB staining, is correlated 
with higher Gleason’s score, with 94.1% of cancer cell 
expressing MMP9 in the cytosol. It is apparent, therefore, 
that MMP9 expression intracellularly is directly correlated 
with a tissue Gleason’s score.[62] With MMP-9 there is a 
correlation between an increase in MMP9 expression and the 
loss of PDEF, a possible inhibitor of MMP9, the loss of which 
results in a more aggressive phenotypic prostate cancer,[63] 
and to further confirm the relationship of aggressiveness 
with MMP9, downstream silencing of MMP-9 in vivo 
reduces the amount of metastasis of prostate cancer.[64] 
Normally, proMMP9 is in complex with tissue inhibitor of 
metalloproteinase (TIMP), preventing its immediate action. 
In the case of the neutrophils, however, lies an exception to 
this rule, releasing proMMP9 without its inhibitor, TIMP.[65] 

MMP 7
The elevated expression of MMP7 in both the serum 
and resected prostate tissue is associated with a poorer 
prognosis[66] most likely due to the more invasive phenotype 
that increased levels of MMP7 confers. Although there has 
not been a published correlation between the expression of 
MMP7 and Gleason’s score, a study investigating the serum 
levels of various MMPs in relation to the invasiveness of 
the prostate cancer, found that individuals with distant 
metastases, circulating serum MMP7 was significantly 
elevated, suggesting that MMP7 is a protein particularly more 
relevant in facilitating prostate cancer’s distant metastases.[66] 
The applicability of such techniques has been shown through 
a number of different studies. One possible protein that 
MMP7 may interact with is a metalloproteinase regulator, 
E1AF, which is correlated with a more metastatic phenotype 
in prostate adenocarcinomas.[67] An additional role for MMP7 
in prostatic adenocarcinoma can be seen in bone metastases. 
The secretion of MMP7 by both osteoclasts and the tumor 

Figure 1: Multistep metastatic process of prostate cancer cells. 
The molecular basis of tumor progression depends on local 
invasion, intravasation, survival in the circulation, extravasation 
and colonization. Tumor cells secrete several factors including 
proteases like MMPs and plasmin which degrade extracellular 
matrix facilitating their migration and invasion. Tumors cells 
then intravasate through the endothelial lining of blood vessels 
into the circulation, and extravasate to distant organs like lymph 
nodes, bones and rectum. Prostate cancer cells then colonize 
and proliferate in foreign tissue thereby spreading the disease. 
(Taken from Dasgupta S, Ph.D thesis,[58])
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cells allows for the solubilization of osteoblast RANKL, 
which activates osteoclasts and tumor mediated osteolysis.[68] 

MMP 2
MMP2 is another major metalloproteinase, whose activity 
is important in the invasiveness and metastasis of prostate 
cancer. Its expression and upregulation is associated 
with Rho mediated activation of Pyk2, FAK, MAPK, and  
Akt.[69] Similar to the other MMPs discussed polymorphisms 
in MMP2 gene is correlated with a higher Gleason’s score.[70] 
In a study investigating the immunohistochemistry with the 
Gleason’s score of various MMPs, it was found that the tissues 
that observed the highest level of MMP2 expression, also 
had the highest grade prostate cancer, as determined by their 
Gleason’s score, scores between 8 to 10, suggesting MMP2’s 
possible oncogenic role in prostate cancer.[71] Several studies 
have found many different influences on the expression of 
MMP2. In WPMY-1 cell stroma, ER  stimulation either 
by estradiol, or by an agonist of the receptor increased the 
expression of MMP2 in the stroma indirectly via increased 
production of TGF-β, the inhibition of which yielded MMP2 
levels comparable to that of the control.[72] Cyclin A1 may 
also play a role in influencing MMP2 production, in that 
areas of prostate tumor tissues with high expression of cyclin 
A1 are correlated with high expression of MMP2 and cells 
over expressing cyclinA1 also had statistically higher levels 
of MMP2.[73]

Transcription factors and coactivators
TMPRSS2-ERG
Recurrent genomic rearrangement in prostate cancer results 
in the fusion of androgen regulated gene TMPRSS2 to 
ERG, which encodes an oncogenic transcription factor ETS. 
ETS family of transcription factors can bind specifically 
to DNA sequence 5′-GGA(A/T)-3′ in the promoter of 
genes and thus can regulate expression of genes involved in 
different pathways including proliferation, migration, and 
oncogenesis. Expression of TMPRSS2-ERG fusion transcript 
has been found in the early stages of prostate carcinogenesis  
prevalent in the low-grade prostate intraepithelial neoplasia 
(PIN).[74] FISH analysis has also confirmed 16–20% of ERG 
rearrangements in high grade PIN,[75] suggesting TMPRSS2-
ERG an early event in prostate carcinogenesis. However, 
certain studies have identified increased ERG and ETV1 
expression in metastatic prostate cancer both in androgen-
dependent and castration-resistant disease,[76-78] suggesting 
ETS gene fusions can be maintained in advanced disease.

ETS gene perturbations in prostate cancer primarily involve 
fusions with androgen-activated genes and majority of studies 
have focused on mechanistic role of the fusion genes in 
carcinogenesis. In cultured prostate cancer cells androgen 

treatment induces ERG expression in cell lines harboring 
TMPRSS2-ERG fusion,[76] but not in androgen insensitive 
cells carrying the fusion gene.[79] Additional fusion partners 
have been identified for ETV1, ETV4, and ETV5 that includes 
TMPRSS2(21q22), SLC45A3(1q32), HERV-K(22q11.23), 
HERV-K17(17p13.1), FOXP1(3p13), C15orf21(15q21.1), 
HNRPA2B1(7p15), KLK2(19q13.33), CANT1(17q25.3), 
DDX5(17q24.1). Most of these translocation partners 
contribute to androgen inducible sequences, except C15orf21 
which is repressed by androgen treatment and HNRPA2B1 
insensitive to androgens.[76,80] Thus, differential androgen 
responsiveness driving ERG gene fusion could affect 
androgen ablation therapy in prostate cancer patients, and 
may provide resistance to androgen withdrawal therapy.

Aberrant expression of ETV1 in prostate cancer cells results in 
increased invasiveness, a phenotype associated with malignant 
progression of the disease.[81] Transgenic mice overexpressing 
prostate specific ETV1 develops mouse PIN[82] consistent 
with the clinical observations in human patients, although 
it failed to develop tumor thus suggesting gene fusions are 
early events in prostate tumorigenesis. However, other 
investigators demonstrated knockdown of TMPRSS2-ERG 
expression resulted in reduced cellular proliferation and 
tumor growth in nude mice, suggesting ERG and ETV1 as 
potential therapeutic target.[83,84] 

Several strategies have been used to block the ETS gene 
function including dominant negative mutants, antisense, 
and RNAi knockdown that were effective in vitro but less so 
in vivo.[85] Other approaches include inhibiting modulators 
of ETS transcription factors such as upstream signaling 
kinases and also downstream targets of ERG protein to block 
its activity.[86] Discovery of estrogen, progesterone, retinoic 
acid pathway alterations in nonandrogen responsive prostate 
cancers containing ETS gene rearrangements, suggests 
additional drug targets.[87] 

Understanding the mechanisms of ETS gene translocations 
in prostate cancer has certainly provided important 
breakthrough about the disease. Clinically however the 
prognostic importance of ETS gene rearrangement is still 
controversial and additional studies are needed to identify 
and verify different variants of translocations. Furthermore, 
differential regulatory networks that drives ETS oncogenic 
rearrangements in prostate cancer with respect to androgen 
signaling need to be elucidated. This will provide additional 
benefits in treating the disease for both androgen responsive 
and castration resistant metastatic prostate cancer patients. 
Discovery of alternative estrogen signaling pathway signature 
genes also provide potential clues to elucidate mechanism of 
ETS gene activation in androgen insensitive cases. 
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MYC
One of the most commonly studied oncogene in prostate 
cancer pathogenesis is MYC, a regulator gene that codes for 
transcription factor. MYC is thought to regulate 15% of all 
genes in humans and is located in the human genome on 
chromosome 8q24 amplicon that is frequently amplified 
in prostate cancer patients. FISH analysis identified MYC 
overexpression in ~9% of primary prostate tumors but 
~75% in advanced prostate cancer patients.[88] In a separate 
study, using comparative genomic hybridization investigators 
detected gain of the 8q region in 72.5% of cases whereas only 
29% of them had genomic amplification as identified by 
FISH.[89] MYC overexpression has also been correlated with 
FOXP3 downregulation, and deletion of FOXP3 in human 
primary prostate cells resulted in concomitant increased MYC 
mRNA and protein level. At molecular level, FOXP3 binds to 
the promoter region of MYC and repress its transcription, and 
hence loss of FOXP3 increased MYC expression in prostate 
cancer patients.[90]

In vitro overexpression of MYC by viral transduction 
transformed prostate epithelial cells and immortalizes the 
cells in single step that were sufficient to generate tumors with 
increased proliferative capacity. Genetically engineered mouse 
models overexpressing MYC have been developed which 
uses either modified rat probasin promoter to drive MYC 
expression known as LOW-MYC or ARR2/probasin promoter 
known as Hi-MYC.[82] These mouse models develop PIN and 
progress to invasive adenocarcinomas; however, the kinetics 
of tumor progression is different. 

Several important MYC target genes, commonly known 
as MYC signature, have been identified which regulates 
numerous pathways involved in prostate cancer progression 
and metastasis. MYC regulates the transcription of these 
signature genes directly or indirectly in prostate cancer 
cells. One of the most well studied MYC downstream 
target gene includes PIM1, a serine/threonine kinase which 
has been identified to be frequently upregulated in subset 
of prostate cancers with poor clinical outcome.[91,92] In vitro 
and in vivo studies indicated that PIM1 alone is insufficient 
or weak to transform prostate cells, but in combination 
with MYC overexpression has increased proliferative rate. 
PIM1 also enhances the MYC transcriptional activity by 
directly phosphorylating histone H3 at MYC binding sites 
thereby enhancing transcription of MYC signature genes.[93] 
Another corollary experiment by inhibition of MYC resulted 
in reduced tumorigenicity of PIM1 overexpressing prostate 
cancer cells, validating the functional cooperation of the two 
proteins. NKX3.1 is a pleiotropic transcription factor that is 
involved in prostate gland development and morphogenesis, 
but lost during cancer pathogenesis and progression.[94] 

However, some studies have detected NKX3.1 expression 
in high grade invasive and metastatic prostate cancer  
patients.[95] In MYC transgenic prostate cancer mouse models, 
loss of NKX3.1 have been observed with the development 
of adenocarcinoma, suggesting MYC can repress NKX3.1 
expression. This suggests oncogenic activation of MYC can 
block tumor suppressor protein resulting in the pathogenesis 
of prostate cancer. 

Several therapeutic strategies have been used to target 
MYC and its signature genes in prostate cancer. Antisense 
oligonucleotides specifically designed to target MYC mRNA 
have been shown to reduce MYC protein resulting in 
reduced nuclear entry and decreased stability of the protein. 
In vivo studies utilizing mouse xenografts, MYC antisense 
oligonucleotides reduced tumor growth by suppressing 
tumor cell proliferation and increased animal survival.[96] 
One particular antisense with modified oligomer diamidate 
moroholino directed against MYC showed promising 
efficacy in phase I clinical trials with limited side effects and 
toxicity. These studies suggest antisense therapeutic approach 
targeting MYC may be beneficial for cancer treatment.

Another therapeutic approach utilizing cardiac glycosides to 
target MYC has shown promising effects in prostate cancer 
development. Both in vivo and in vitro studies demonstrated 
the antitumor potential of cardiac glycosides, particularly 
synthetic cardnolide UNBS1450 that blocks several MYC 
signature genes and inducing apoptosis.[97] This compound 
also showed reduced toxicity in normal cells; however, exact 
mechanism of its action is poorly understood.

Oncogenic transcriptional coactivators
Transcription factors and nuclear receptors bind to 
coregulatory molecules (coactivators or corepressors) that 
directly or indirectly regulate the transcription by recruiting 
several proteins to build the transcription complex at the 
target gene promoter. The most important nuclear receptor 
in context of prostate cancer is AR, which belongs to the large 
nuclear receptor superfamily of ligand activated transcription 
factor. In the absence of hormone, AR is located in the 
cytoplasm bound to heat shock proteins (hsp) but upon 
hormone induction dissociates from the hsp protein complex, 
dimerizes and translocates to the nucleus. AR dimer binds 
to specific DNA sequences known as androgen response 
elements (ARE) and recruits series of coactivator molecules 
necessary for chromatin remodeling and transcriptional 
complex. Large number of AR coactivators have been 
identified that are known to the potentiate AR activity,[98] 
of which steroid receptor coactivators (SRCs) have been 
studied extensively. 
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SRCs also known as Nuclear Receptor Coactivators (NCOA) 
consists of three homologous proteins SRC-1, SRC-2 and 
SRC-3 comprising the p160 SRC family. SRCs have three 
distinct structural domains that include most conserved region 
bHLH-PAS for protein–protein interaction, central nuclear 
receptor interacting domain containing three LXLL motifs, 
and C-terminal two transcriptional activation domains (AD1 
and AD2). In addition to interacting with nuclear receptors, 
SRCs coactivates other transcription factors including NF-
κB, STATs, HIF1, and Smads. Along with these transcription 
factors, SRCs have been found to be highly overexpressed 
or amplified in prostate cancer. Studies have shown SRC-1 
messenger and protein expression positively correlates with 
prostate tumor grades; however, frequency of SRC-1 gene 
amplification in prostate cancer patients is less. SRC-1 can 
enhance AR-dependent growth of prostate cancer cells in 
culture, and knockdown of SRC-1 can significantly reduce 
growth of LNCaP cells. However, in AR-negative PC-3 
and DU-145 cells SRC-1 has minimal effect, suggesting 
SRC-1 promotes prostate cancer growth by enhancing AR 
function. Expression of SRC-2, another member of SRC 
family has been found to be increased in prostate cancer 
and correlates positively with grade and stage of cancer. 
Recently, integrative genomic profiling has identified SRC-
2 to be highly overexpressed in prostate cancer patients 
and has been classified as an oncogene in prostate cancer 
pathogenesis. Out of 218 prostatic tumors, 8% of primary 
tumors and 37% of metastatic tumors showed gain in SRC-2 
expression.[99] Microarray analysis also confirmed increased 
expression of SRC-2 correlated with tumor proliferation 
and inhibition of apoptosis. Prostate cancer patients who 
underwent ADT, showed increased expression of SRC-2, 
and in vitro studies confirmed that high levels of androgen 
can repress SRC-2 expression, suggesting androgen ablation 
therapy can lead to increased SRC-2 in prostate cancer 
patients. Functionally, SRC-2 acts as potent transcriptional 
coactivator of AR, thereby modulating expression of AR target 
genes in both androgen dependent and castration resistant 
prostate cancer (CR-CaP) cells.[100,101] SRC-3 expression 
has been found to be increased in 38% of prostate cancer 
patients and its expression positively correlates with disease  
recurrence.[102] Mechanistically, SRC-3 regulates Akt-mTOR 
growth promoting pathways in prostate cancer cells and 
silencing of SRC-3 reduces tumor proliferation both in vitro 
and in vivo.[103,104] Functional role of SRC-3 was also evaluated 
in spontaneous TRAMP mouse models of prostate cancer, in 
which SRC-3 expression was higher in the advanced stages 
of the disease. SRC-3 gene deletion significantly increased 
TRAMP mice life expectancy suggesting SRC-3 inhibition 
may be an attractive therapeutic strategy for prostate cancer 
patients.[105] 

Although several strategies have been used to silence SRCs 
to study their role in prostate cancer, effective inhibitors 
targeting the coactivators are still lacking. Disrupting the 
androgen receptor-SRC interaction using small molecule 
inhibitors or peptides may be a possible strategy along with 
conventional direct targeting of the coactivators using small 
molecules for prostate cancer therapy.

CONCLUDING REMARKS AND FUTURE 
PERSPECTIVE

Over the last two decades increased research efforts to 
understand the basic nature of prostate cancer biology has 
advanced our understanding about the disease. However, 
a number of fundamental questions concerning the 
heterogeneity of the disease, resistance to prevailing therapies, 
and therapeutic opportunities for advanced metastatic 
prostate cancer will be the prime focus for prostate cancer 
researchers. Technological advances to define the intricate 
details and molecular circuits within tumor cell and tumor 
microenvironment will identify prospective targets for 
prostate cancer.

Recent research has succeeded in implicating several 
oncogenic activations, either through genomic or nongenomic 
pathways, to neoplastic progression of prostate cancer cells 

Figure 2: Cellular localization of various oncogenes and their 
signaling network promoting growth and survival of prostate 
cancer cells. Overexpressed growth factor receptors on 
ligand binding activate PI3K which converts PIP2 to PIP3. 
Phosphoinositide dependent kinase (PDK1) then binds to PIP3 
and phosphorylate Akt. In prostate cancer, loss of PTEN, a lipid 
phosphatase responsible for converting PIP2 back to PIP3 favors 
in constitutively activated Akt which then phosphorylates and 
activates broad range of transcription factors including AR. 
Activated AR translocates to the nucleus and recruits general 
transcription factors, coativators (SRC), and other transcription 
machinery at the target gene promoter enhancing growth, 
survival and invasiveness. Fused oncogenes like ERG, an AR target 
gene can also upregulate expression of several genes promoting 
prostate cancer progression.
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[Figure 2]. These hyperactive oncogenes confer metabolic 
and growth promoting advantages to tumor cells, which 
differ enormously within patient population. Understanding 
the genetic nature of prostatic tumor will be important for 
effective personalized treatment opportunity for prostate 
cancer patients. Growing concern lies in understanding the 
metastatic potential of primary prostatic tumor and ways 
to distinguish the lethal from dormant tumor subtype. 
Metastasis research over the years has identified several 
important molecules in the regulation of biological activities 
of tumor cell invasion and migration. Detailed understanding 
has identified potential oncogenes and their functional 
activities that provide prostate tumor cells invasive and 
migratory power to cross the primary tumor site and colonize 
at a distant organ. We hope that with this rapid pace of 
discovery continued with simultaneous translation of basic 
findings to clinical arena will offer us effective ways to treat 
and finally eliminate prostate cancer. 
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