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Abstract
There have been numerous reviews written to date on estrogen receptor (ER), focusing on topics such as 
its role in the etiology of breast cancer, its mode of regulation, its role as a transcriptional activator and how 
to target it therapeutically, just to name a few. One reason for so much attention on this nuclear receptor is 
that it acts not only as a prognostic marker, but also as a target for therapy. However, a relatively undiscovered 
area in the literature regarding ER is how its activity in the presence and absence of ligand affects its role 
in proliferation and cell cycle transition. In this review, we provide a brief overview of ER signaling, ligand 
dependent and independent, genomic and non-genomic, and how these signaling events affect the role of ER 
in the mammalian cell cycle.   
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INTRODUCTION

The human estrogen receptor (ER) is a member of the 
nuclear hormone receptor family, requiring activation by 
association with 17-β-estradiol (E2) to perform its function 
as a transcription factor. Upon diffusion of E2 across the 
cell membrane, the hormone can bind to ER followed 
by receptor dimerization, interaction of ER dimers with 
the estrogen response elements (ERE) of target genes, 
recruitment of coregulatory factors, and initiation of target 
gene transcription.[1,2]

Two subtypes of ER have been identified to date: ERα and 

ERβ. These forms are differentially expressed in various 
tissues and have unique functions, but the functional domains 
of ER are common to both receptors.[1-8] The N-terminal A/B 
domain contains the activation function 1 (AF1) domain, 
which is involved in ligand-independent initiation of gene 
transcription.[2] The DNA-binding domain (DBD) of the ER 
protein is located in the C domain, enabling ER to associate 
with the EREs of target genes.[3] The D domain connects 
the E and C domains and is called the hinge region.[2] The E 
domain is the ligand-binding domain (LBD), which contains 
the AF2 domain; both are key for the initiation and activation 
of ER-target gene transcription.[2] The AF2 domain also 
contains binding cavities for coactivator and corepressor 
proteins.[3] Dimerization of ERα occurs after the binding 
of E2 to the LBD, followed by the phosphorylation of ERα 
and initiation of gene transcription.[4,5] Together with the 
other domains, the F domain of ER regulates ligand binding, 
coregulator protein interactions, and transcription activation 
events.[6]
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Post-translational modifications of ER, such as phosphorylation, 
acetylation, and ubiquitination, are important regulatory 
mechanisms.[8] Receptor phosphorylation can alter the 
conformation of ERα and expose the protein to further 
rounds of phosphorylation. Additionally, phosphorylation can 
activate transcription of target genes in response to specific 
phosphorylations or promote associations of ERα with 
coactivator proteins.[4,9-11] In response to estradiol binding, 
Ser118 is the predominant phosphorylation site on the ERα 
protein; however, Ser104 and Ser106 are also frequently 
phosphorylated sites.[12,13] ER phosphorylation can also occur 
in response to mitogen-activated protein kinase (MAPK) 
signaling, which promotes phosphorylation of Ser118 and 
Ser167 residues.[8,11] These common phosphorylation sites 
are located in the AF1 domain, and their phosphorylation 
promotes the recruitment of ERα coactivator proteins.[11]

ER SIGNALING

Classical signaling
Unliganded ERα is bound to a 90-kDa heat shock protein 
(HSP90) in the cytoplasm, forming a large molecular complex 
[Figure 1].[14] Binding of molecular chaperones (e.g. HSP90) 
to a target protein (e.g. ERα) maintains proper protein folding 
in the cytoplasm, which is necessary for different intracellular 
processes such as stabilization of nascent polypeptide chains, 
prevention of protein aggregation, as well as chaperoning and 
transportation of the proteins across cellular membranes.[15,16] 
Dissociation of ERα from HSP90 occurs upon binding of 
the E2 ligand and causes a conformational change of ERα, 
allowing receptor homodimerization. These dimers can 
translocate into the nucleus and bind directly to the EREs 
of ER target genes, initiating gene transcription.[17] These 
events trigger an estrogenic (i.e. ligand-dependent) response 
in the cell, consisting of a threefold to fourfold increase in the 
level of ER phosphorylation upon treatment with estrogen 
as compared to unliganded conditions.[1,18]

Non-classical signaling
Ligand-bound ERα forms a complex with DNA-bound 
transcription factors, such as SP-1 and AP-1, activating the 
transcription of genes that do not contain a classical ERE [Figure 
1].[19] Examples of non-ERE containing genes are the ovalbumin 
proximal promoter, collagenase and insulin-like growth factor 1 
(IGF-1).[20-26] At these genes, ERα is recruited to AP-1 sites by 
Jun/Fos, making ERα part of the Jun/Fos coactivator complex, 
which initiates non-ERE transcriptional activation.[27]

Non-genomic signaling
The non-genomic functions of ERα are mediated in part 
via the plasma membrane-associated receptor, giving rise 
to intracellular signal transduction pathways and rapid 

cytoplasmic signaling [Figure 2].[28-31] Simoncini et al. showed 
an increase in endothelial nitric oxide synthase (eNOS) 
activity due to an increase in physiological concentrations of 
E2 in human vascular endothelial cells.[32] Nitric oxide (NO), 
a pleiotropic regulator, is a product of eNOS and functions 
by regulating biological processes such as vasodilation, 
neurotransmission, and macrophage-mediated immunity. In 
cancer, NO has been shown to contribute to angiogenesis 
through the upregulation of vascular endothelial growth 
factor (VEGF), and therefore promotes tumor growth.[33] 
Stimulation of NO release by E2 results in activation of 
eNOS by the phosphatidylinositol-3-kinase (PI3K) and 
MAPK pathways.[34]

Figure 1: Estrogenic response. Upon the binding of estrogen (E2) 
to ERα, the receptor dissociates from the heat shock proteins in 
the cytoplasm and forms a homodimer, which can translocate 
to the nucleus. Once there, ERα homodimers can initiate 
transcription from the ERE sites of ERα target genes or through 
interactions with other transcription factors

Figure 2: Non-genomic ERα pathway. Upon stimulation by growth 
factors, ERα is able to initiate cytoplasmic signaling cascades, 
such as the MAPK and PI3K pathways. ERα is phosphorylated in 
the non-genomic pathway by a tyrosine kinase receptor (TKR) 
in a ligand-independent manner and can promote unregulated 
gene transcription
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ERα has been shown to bind to the p85α regulatory subunit of 
PI3K in a ligand-dependent manner, but activation of eNOS 
is completely blocked using wortmannin, a PI3K inhibitor, or 
ER antagonist ICI 182,780.[32,35] In this non-genomic pathway, 
ERα initiates a rapid, transient signaling cascade which 
originates from the cytoplasm via direct association with 
signal transduction proteins, including MAPK, protein kinase 
C (PKC), and guanosine triphosphate-binding proteins 
(G-proteins).[36,37] Treatment of human granulosa-luteal cells 
(hGLCs) with agents known to increase the levels of cyclic 
AMP resulted in downregulation of ERα levels. Additional 
studies using adenosine-3′,5′-cyclic monophosphorothioate 
(protein kinase A inhibitor), Rp-isomer, triethylammonium 
salt, and an adenylate cyclase inhibitor (SQ 22536) showed 
a modulation of ERα levels, suggesting a link between ERα 
and signal transduction pathways, such as those involving 
protein kinase A (PKA) or PKC.[38] Another example of 
the non-genomic action of ERα involves MAPK signaling. 
Treatment of MCF-7 cells with E2 results in the activation 
of MAPK, which is preceded by a rapid increase in cytosolic 
calcium. Subsequent treatment with E2 and ICI 182,780 
abrogates the activation of MAPK.[39] 

It has been suggested that cytoplasmic, plasma membrane-
associated ERα is only a small subset of the classic ERα, or 
perhaps a spliced variant of full-length ERα.[40,41] Support 
for this hypothesis surfaced when a 46-kDa spliced variant 
of ERα (ERα46) was identified in human endothelial cells. 
Confocal microscopy revealed that a proportion of both 
full-length (ERα66) and ERα46 was localized outside of 
the nucleus and was capable of binding to E2; however, 
E2-mediated transcriptional activation by ERα46 was lower 
than observed for ERα66. Additionally, ERα46 could inhibit 
classical ERα66-mediated transcriptional activation.[41] In 
other studies, membrane ERα and intracellular ERα were 
found to be closely related, originating from the same coding 
sequence.[42-44] Using immunohistochemistry, Watson et al. 
found eight distinct antibodies against full-length ERα were 
able to recognize membrane-associated ERα, suggesting the 
membrane and nuclear ERα proteins are highly related.[44]

Ligand-independent signaling
Activation of ERα through a ligand-independent pathway 
is mediated by growth factor signaling, which results in 
the phosphorylation of ERα.[45,46] Such ligand-independent 
activation of ERα has been linked with epidermal growth 
factor receptor (EGFR) and insulin-like growth factor 
receptor (IGFR) signaling.[47] EGFR signaling activates 
cytoplasmic nonreceptor kinases (e.g. Src) that can 
phosphorylate ERα, as well as some ERα coactivator proteins.
[46] ERα binds to IGF-1R in response to E2 stimulation, 
forming a heterodimer; the downstream result is activation of 

MAPK signaling.[48] Kahlert et al. overexpressed ERα in COS7 
and HEK293 cells, which have high levels of endogenous 
IGF-1R. Upon treatment of these cells with E2, ERα was 
found to bind to IGF-1R, resulting in rapid phosphorylation 
of IGF-1R and cytoplasmic extracellular signal-related kinases 
1/2 (ERK1/2). These ERα-triggered events were required to 
induce the activation of an ER-responsive ERE-luciferase 
reporter in IGF-1-stimulated cells. These data demonstrate 
that binding of the E2 ligand to ERα is a necessary step toward 
rapid IGF-R1 cytoplasmic signaling.[48]

Another example of the ligand-independent signaling by ER 
involves its binding to G-proteins. G-protein–coupled ERα 
stimulated with E2 can initiate signal transduction from the 
plasma membrane through the transactivation of EGFR/
IGFR followed by activation of matrix metalloproteinases 2 
and 9 (MMP-2, MMP-9) and tyrosine kinase c-Src. MMP-
2 and MMP-9 are type IV collagenase/gelatinase proteins, 
which degrade collagen in the mammalian extracellular 
matrix and facilitate cancer cell invasion through basement 
membranes.[49] c-Src can activate downstream signaling 
cascades, such as MAPK, PI3K, and PKC, through 
interactions with ion channels or membrane-associated 
G-protein signaling molecules and elicit physiological effects, 
including proliferation, metastasis, and survival.[50]

G-proteins and ERα are enriched in cavities of the 
plasma membrane called calveolae and are sites of protein 
interactions between G-proteins and ERα.[51] Other signaling 
molecules needed for the initiation of cytoplasmic cascades 
can also migrate to the calveolae.[50] Interactions of ERα 
with a G-protein in the calveolae can recruit c-Src, Shc (Src 
homology complex), and the p85α subunit of PI3K.[52,53] As 
a result of ERα activation, MMP-2 and MMP-9 can activate 
a multiple-kinase signaling cascade through transactivation 
of EGFR.[54] Additionally, c-Src, Shc, and p85α recruitment 
and activation result in the activation of secondary signaling 
messengers and downstream kinase pathways such as ERK, 
MAPK, and PDK1/AKT.[55-58]

ER IN NORMAL MAMMARY TISSUE

The estrous cycle
The female mammary gland is in a state of quiescence until 
puberty, at which point cell division increases substantially. 
The onset of puberty leads to observable estrous cycles 
of cell proliferation followed by involution in the female 
mammary gland.[59] The estrous cycle originates in the 
follicular phase followed by the luteal phase, which falls 1 
week after ovulation and is the point at which breast epithelial 
cell proliferation is maximal in the adult breast. During the 
luteal phase, E2 and progesterone hormones are secreted 
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through the corpus luteum, but only E2 levels are elevated 
during the follicular phase.[60-67]

Proliferation of human mammary tissue
Normal human breast tissue proliferation appears to be solely 
dependent on E2, with no obvious effects by progesterone.
[68] To examine this specific role of E2, Laidlaw et al. 
subcutaneously implanted pieces of normal human breast 
tissue into athymic nude mice, with subsequent implantation 
of slow-release E2 and/or progesterone pellets. The rate 
of proliferation of the implanted tissues was assessed via 
thymidine uptake. The E2 pellet increased the thymidine 
labeling index from a median of 0.4% to 2.1% after 7 days, 
while the progesterone pellet had no effect.[69] Additional 
evidence for the importance of E2 in the maintenance of a 
healthy breast is that the risk of breast cancer increases with an 
increased duration of exposure to E2. More specifically, early 
onset of menarche and late menopause are both associated 
with a greater risk of cancer incidence.[70]

The proliferative stages of a normal breast are during puberty 
and the estrous cycle and, during these stages, the majority 
of proliferating cells do not express ER, or do so at a very 
low level in terminal end buds and ducts.[71] The level of 
differentiation of the mammary parenchyma determines 
the proliferative activity of the mammary epithelium.[70] In 
post-pubertal women, the lobule type 1 (Lob 1), also known 
as the terminal ductal lobular unit (TDLU), is the most 
undifferentiated structure. Structures progress from Lob 
1 to Lob 2, which has a more complex morphology and is 
more differentiated than Lob 1. Lob 1 and Lob 2 structures 
differentiate further to Lob 3 and Lob 4 structures during 
pregnancy, under the influence of hormones.[72] Upon the 
full differentiation to Lob 4 structures during pregnancy, 
the proliferative activity of the mammary epithelium is  
reduced.[59]

The ERα and progesterone receptor (PgR) content of the 
lobular structure is also directly proportional to the rate of cell 
proliferation. The ERα/PgR content of Lob 1 epithelial cells is 
much higher (14%) than that of Lob 3 cells (0.5%) due to the 
higher proliferative activity of cells in Lob 1 structures; this 
could explain the higher susceptibility of Lob 1 to transform 
and become the site of origin for ductal carcinomas.[73-75] 
Lob 1 contains at least three cell types, based on their ERα 
status and proliferative index as measure by Ki67 expression: 
A) ERα−/Ki67+, B) ERα+/Ki67−, and C) ERα+/Ki67+. 
Evaluation of ERα status in a tumor is critical to predict a 
response to endocrine therapy, while the antibody against 
Ki67 serves as a potent tool for evaluating proliferation status 
because the Ki67 nuclear antigen is only expressed in cycling 
cells, not those in G0.

[76] The three cell types described are 

regulated by positive and negative feedback loops, which are 
mediated by estrogen signaling. For example, E2 stimulation 
of group B cells could release certain growth factors which, 
through paracrine pathways, can increase the proliferation 
of group A cells. However, there is some controversy 
regarding the potential for reversion of ERα-negative cells 
to ERα-positive cells.[69,77] To address this issue, a study was 
initiated to examine whether cellular expression of ERα 
occurs on a clonal basis or as a function of the differentiation 
process. MCF-7 cells were subjected to a soft agar colony 
formation assay in the presence or absence of tamoxifen, an 
antiestrogen, followed by immunoperoxidase staining with 
a monoclonal ERα antibody. This revealed heterogeneity in 
ERα expression among cells within the same, or different, 
clones. Additionally, tamoxifen was shown to significantly 
reduce clonal growth; proliferating clones unresponsive to 
tamoxifen had low ERα expression. Based on these results, 
some investigators propose that a change in ERα expression 
concomitantly occurs with the differentiation of cells within 
clones, suggesting that ERα-positive colonies may arise from 
ER-negative progenitors.[77]

There is also evidence to suggest that cellular proliferation 
can be independent of the ERα/PgR status of the cell. Knabbe  
et al. suggest that cells can control the proliferation of adjacent 
cells through autocrine or paracrine actions.[78-80] To this end, 
they co-cultured MCF-7 cells with MDA-MB-231 cells and 
discovered that secretion of biologically active transforming 
growth factor-β (TGF-β) from MCF-7 cells inhibited 
proliferation of the MDA-MB-231 cells.[78-80] 

40% of epithelial cells in pre-pubertal rats express ER in the 
nucleus, dropping to 30% upon the onset of puberty and to 
5% by day 14 of pregnancy. However, there was a significant 
induction of the nuclear ER levels during lactation – up to 70% 
by day 21. Studies have shown that 90% of ERα-expressing 
cells are non-proliferative and 55–70% of proliferating cells 
express neither ERα nor ERα, showing that neither receptor is 
a prerequisite for estrogen-mediated proliferation.[81,82] Similarly, 
treatment of proliferating MCF-7 cells with any selective ER 
modulator (SERM, i.e. tamoxifen) results in an increase in 
ERα levels. Consequently, p27 levels increased, which is a 
mark of non-proliferative cells.[82] Together, these studies in 
normal mammary glands highlight the paradoxical role ER has 
in cellular proliferation.

Unlike normal mammary epithelial cells containing ER/PgR, 
estrogens stimulate the proliferation of human preadipocytes, 
resulting in induction of c-myc and cyclin D1 expression; this 
suggests that c-myc and cyclin D1 may be mediators of estrogen-
stimulated proliferation in preadipocytes.[83] These proliferating 
preadipocytes are often located in proximity to non-dividing cells 
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that express ER/PgR. ER and PgR-positive cells can stimulate 
proliferation in adjacent ER/PgR cells via paracrine signals, such 
as E2-induced genes: PgR, pS2, and genes encoding the growth 
factor amphiregulin.[59,71,84,85] Amphiregulin binds to EGFR and 
mediates signaling through intracellular pathways, including 
MAPK, Janus kinase (JAK), and signal transducer and activator 
of transcription (STAT), to stimulate proliferation through Myc, 
Myb, ETS, and cyclin D1.[86]

Another example of paracrine/autocrine cross-talk was revealed 
upon examination of the proliferation rate in lobules of non-
tumor–bearing women throughout the menstrual cycle. Breast 
tissue samples were collected from 83 women at different 
stages of the menstrual cycle and the samples were analyzed 
for proliferation and apoptotic rates. Interestingly, sequential 
cell multiplication (mitosis) and cell deletion (apoptosis) was 
observed during each menstrual cycle, with higher indices of 
both processes in the latter half of the cycle, with an apoptotic 
peak 3 days after the mitotic peak.[63] E2 and progesterone are 
targeted to the breast, so abundance of these hormones during 
the latter half of the menstrual cycle could cause an increase 
in proliferation, followed by apoptosis to maintain tissue 
homeostasis.

ERα INVOLVEMENT IN THE CELL CYCLE

Deregulated expression of key cell cycle regulators can trigger 
a cascade of events leading to mammary tumorigenesis. Both 
of the ER receptors have been shown to influence cellular 
proliferation and cell cycle events.[83]

Interactions with cell cycle machinery
ERα can be linked to the cell cycle through its interaction with 
cyclin D1.[83] Cyclin D1 is a key regulator of the cell cycle and 
acts by binding to the retinoblastoma (Rb) protein and directing 
cyclin-dependent kinases, cdk4 and cdk6, to hyperphosphorylate 
Rb. This phosphorylation event results in the passage of cells 
from G1 to the S phase of the cell cycle [Figure 3].[87] Cyclin 
D1 is required for normal breast cell proliferation and for 
differentiation associated with pregnancy; however, cyclin 
D1 has also been found to be an important factor in breast 
cancer development.[88] To evaluate the oncogenic potential 
of cyclin D1, Weinstat et al. generated transgenic mice, which 
overexpressed cyclin D1. These mice exhibited malignant 
mammary cell proliferation followed by the development of 
mammary adenocarcinomas.[89] As additional evidence, cyclin 
D1 is amplified or overexpressed in a majority of human breast 
adenocarcinomas.[90,91]

Estrogen signaling can induce cyclin D1 expression via 
the binding of ligand-bound ER to an ERE site on the 
CCND1 promoter [Figure 3].[92] The effect of E2 addition 

to E2-deprived MCF-7 cells was observed using chromatin 
immunoprecipitation (ChIP) assays, which revealed that ERα 
binds downstream of the cyclin D gene, which is important 
for its transactivation function.[93] Moreover, E2 increased the 
recruitment of p300 and Forkhead box protein 1 (FoxA1, an 
ERα transcriptional factor) to the cyclin D regulatory regions, 
preparing the site for transcriptional activation of cyclin D. 
Additionally, cyclin D mRNA and protein levels increase 
upon ERα, FoxA1, and p300 binding to the promoter, while 
cyclin D transcription is disrupted upon downregulation 
of each of these proteins.[94] The kinase activity of cdk4, 
the cyclin D binding partner, is also dependent on serum 
stimulation in the G1 phase.[95]

When serum-starved MCF-7 cells are stimulated by E2 to 
re-enter the cell cycle, cyclin E-cdk2 is activated and this 
complex can also hyperphosphorylate Rb, allowing the 
progression of cells from the G1 to S phase [Figure 3].[96] 
E2 (1 nM) was sufficient to induce cdk2-associated kinase 
(CAK) and Rb kinase activities to levels eightfold and fivefold 
higher, respectively, than that observed in growth-arrested 
cultures.[95] Levels of cyclins D and E in the growth-arrested 
MCF-7 cells were also increased post-E2 treatment.[96] It was 
also reported that E2-mediated transactivation of cyclin D 
results in overexpression of cyclin D, resulting in the shift 
of the p21 cdk inhibitor from the cyclin E–cdk2 complex 
to the cyclin D–cdk4 complex. The dissociation of p21 
from cyclin E–cdk2 [Figure 3] and association of p21 with 
cyclin D–cdk4 both result in activation of these cyclin–cdk 
complexes. These findings support the notion that E2 can 
manipulate cell cycle progression and, in the big picture, the 
proliferation rate of breast cancer cells by modulating the 
activities of G1 cyclin–cdk complexes.[96]

Figure 3: Involvement of ERα in the cell cycle. ERα plays many 
roles across the cell cycle phases, interacting with cell cycle 
machinery such as cyclins, cyclin-dependent kinases (cdk), cdk 
inhibitors, and the retinoblastoma protein (Rb)
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Cyclin A is another key cell cycle regulator linked to the 
ER pathway. Cyclin A shares several features with cyclin 
D, including the ability to phosphorylate Rb upon binding. 
Due to this function, it is reasonable to expect that changes 
in cyclin A expression levels would result in deregulation 
of the G1 to S cell cycle transition.[97,98] Phosphorylation of 
Ser104 and Ser106 of ERα via the cyclin A–cdk2 complex 
leads to an increase in ERα transcriptional activation  
[Figure 3]; however, this activity was observed to be 
independent of treatment with E2 or tamoxifen. These 
observations suggest a role of cyclin A–cdk2 in the activation 
of ERα for ligand-independent transcriptional activation 
through the ERα AF1 domain.[99]

ERα can also influence cell proliferation via direct protein–
protein interactions with regulator proteins, including the 
p27 cdk inhibitor. p27 is the main inhibitor of the cyclin 
A–cdk2 complex and arrests cells in the S-phase, activating  
apoptosis.[52] ERα binds to the C-terminal region of p27 to 
sequester it in the cytoplasm and interrupts the p27 inhibitory 
activity in the cell cycle [Figure 3].[100]

E2 can also modulate cell cycle transitions through the 
inhibition of negative cell cycle regulators. For example, 
E2 can repress Reprimo (RPRM), a cell cycle inhibitor,  
which is induced following irradiation in a p53-dependent 
manner.[101,102] The overexpression of RPRM in various 
cell lines, including HeLa, MCF-7, and mouse NIH3T3 
cells, resulted in a G2 arrest by inhibition of cdk1 activity 
and interference in the nuclear translocation of cyclin B1–
cdk1 complex. In double thymidine-synchronized HeLa 
cells transduced with an RPRM adenovirus, a cytoplasmic 
accumulation of cyclin B1 was observed as well as inhibition of 
key mitotic events, such as chromosomal condensation.[103-105] 
The formation of a complex between ERα, histone deacetylase 
7 (HDAC7), and FoxA1 is required to inhibit RPRM activity  
[Figure 3].[101] FoxA1 protein expression in breast cancer, 
as assessed by immunohistochemistry, has been associated 
with ERα-positivity and luminal A molecular subtyping. 
Additionally, the coexpression of FoxA1 and ERα was found 
to be a better predictor of survival than PgR expression.[106]

In MCF-7 cells treated with E2, cyclin G2 is another primary 
target gene that is robustly downregulated.[107,108] Contrary 
to the typical cyclin functions, cyclin G2 maintains cells in a 
quiescent state and prevents them from making the G1 to S 
phase transition.[109,110] The promoter of cyclin G2 contains 
a half-ERE site and a GC-rich region, which serve as the 
binding sites for ER and Sp-1, respectively. ChIP experiments 
showed that E2 supplementation led to recruitment of ER to 
the cyclin G2 promoter, dismissal of RNA polymerase II, and 
formation of a complex containing N-CoR (nuclear receptor 

corepressor) and deacetylases. Collectively, this complex leads 
to a hypoacetylated chromatin state capable of repressing 
expression of the cyclin G2 transcript.[108]

The role of ER in the G1 and S phases of the cell cycle has 
been described as a mediator of cell proliferation; however, 
the role of ER signaling in the G2 and M phases has not been 
explored as thoroughly. The key regulator of the G2 to M 
phase transition is the cyclin B–cdk1 complex, which resides 
as an active complex until the initiation of metaphase. In 
order for proliferating cells to enter anaphase, cyclin B needs 
to be degraded by the anaphase promoting complex (APC), 
the cyclin B ubiquitin ligase.[35] Mitotic arrest deficient 2 
(MAD2) protein interacts with the APC and is present on 
chromosomes during cell division, where it is involved 
in the attachment of chromosomes to the mitotic spindle 
upon the onset of anaphase. MAD2 is also an APC inhibitor, 
resulting in the blockade of anaphase. ERα interacts directly 
with MAD2 and increases its activity; moreover, the ERβ/
MAD2 complex helps to correct chromosome orientation 
in the mitotic spindle through binding of MAD2 to the 
kinetochores.[109] Based on this relationship between ERβ and 
MAD2 and the contrasting activities of the α and β isoforms 
of ER, one can posit that ERβ could have an inhibitory effect 
on the G2 and M phases of the cell cycle through regulation 
of chromosomal attachment to the mitotic spindles prior to 
anaphase entry.

There has also been evidence presented for cross-talk between 
ERα and cyclin B. A study by Gustafsson et al. examined how 
RanBP-type and C3HC4-type zinc finger-containing protein 
1 (RBCK1), a protein kinase C1 (PKC1) interacting protein, 
result in the progression of cell cycle by driving transcription 
of ERα and cyclin B in ER-positive breast cancer cells.[110] 
ChIP analysis on parental MCF-7 cells revealed that RBCK1 
is recruited to the major ERα promoter region, resulting 
in the induction of ERα mRNA levels. Interestingly, no 
RBCK1 was detected on the cyclin B promoter, but RBCK1 
silencing resulted in G2 arrest and reduced levels of both 
ERα and cyclin B mRNA and protein. The reintroduction 
of cyclin B, but not ERα, released the cells from the observed 
G2 arrest.[110,111] While this study highlighted the implicit 
role of cyclin B in the cell cycle, it also suggested the novel 
importance of ERα.

Interactions with cell cycle effector molecules
E2 and ER signaling can also affect cell cycle progression by 
interacting with proteins other than the traditional cyclin and 
cdk machinery, including Rb, tumor necrosis factor alpha 
(TNF-α), insulin receptor, and human epidermal growth 
factor receptor 2 (HER2/neu).[112-123]
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The retinoblastoma protein (Rb) is a tumor suppressor, such 
that it has an inhibitory effect on cell cycle progression. In 
terms of the cycle, Rb is involved with the G1 checkpoint and 
effectively blocks S phase entry by binding the transactivation 
domain of the E2F transcription factor.[112] The Rb protein 
is hyperphosphorylated by cyclins A, D, and E, which 
frees E2F to perform its transcription factor functions and 
facilitate the G1 to S phase transition.[89,97,98] Treatment of 
MCF-7 cells with E2 has also been shown to downregulate 
Rb at the levels of mRNA and protein by 50% and 70%, 
respectively.[113] Ligand-bound ERα binds to the Sp1 site 
of the retinoblastoma binding protein 1 gene (RBBP1) and 
activates transcription of the RBP1 protein. Once translated, 
RBP1 binds in the Rb binding pocket and further promotes 
cell cycle inhibition via recruitment of HDAC-dependent and 
HDAC-independent repression activities.[114,115] Additional 
studies have shown an increased risk of breast cancer in 
the mothers of children who suffer from retinoblastoma or 
osteosarcoma.[116]

Transcription of the gene encoding the TNF-α proteins 
is also repressed by E2 signaling.[117] TNF-α plays a role 
in translocation of the p21 and p27 cdk inhibitors to the 
nucleus, where they can facilitate their inhibitory effect on 
the cell cycle. This role was studied in TNF-α–resistant 
MCF-7 cells, where p21 and p27 were mislocalized to the 
cytoplasm.[118] E2-bound ERβ is a potent repressor of the 
transcription of the gene encoding TNF-α, but ERα is also 
able to perform this transcriptional repression.[117] Together, 
these observations suggest that ER could prevent the nuclear 
translocation of p21 and p27 through repression of TNF-α, 
leading to an uncontrolled cell cycle.

The insulin receptor interacts with a docking protein, 
insulin receptor substrate 1 (IRS-1), which can translocate to  
the nucleus and activate the c-myc and cyclin D1 gene 
promoters.[119] Therefore, propagation of the insulin receptor/
IRS-1 signaling leads to cell cycle activating events. On the 
contrary, estrogen signaling downregulates expression of 
the insulin receptor at the transcriptional level.[120] These 
findings suggest that downregulation of insulin receptor 
expression can lead to decreased activation of the IRS-1 
protein, thus abrogating the effect of cell cycle progression 
through estrogen signaling.

HER2/neu or ErbB2 promotes cell cycle progression 
through the G1 to S phase transition in SKBr3 cells, 
ErbB2-overexpressing breast cancer cells. This activity was 
modulated via redistribution of the p27 cdk inhibitor from 
cyclin E–cdk 2 complexes to sequestering complexes, thus 
enhancing cyclin E–cdk2 kinase activity.[121] The first intron 
of ERBB2 has an estrogen-suppressible enhancer, such that 

E2 can suppress the transcription of the ERBB2 gene. This 
causes a decrease in the levels of ErbB2 mRNA and protein 
in ER-positive breast cancer cells.[122,123] Together, these 
examples highlight various roles of estrogen signaling in 
the downregulation of ER target genes, leading to cell cycle 
stimulation and cell proliferation.

Effects of tamoxifen-bound ERα on the cell cycle
Association of ERα with tamoxifen, an ERα antagonist, results 
in the transcriptional repression of ERα target genes. At the 
promoters of these genes, a corepressor complex is formed, 
which contains N-CoR and the silencing mediator for 
retinoid and thyroid (SMRT) hormone receptor. However, 
the silencing of N-CoR and SMRT led to tamoxifen-induced 
cell cycle stimulation. Upon the silencing of N-CoR and 
SMRT in MCF-7 cells, treatment with E2 or tamoxifen did 
not alter the activation of such ERα target genes as c-myc, 
cyclin D1, or stromal-derived factor 1; however, XBP-1 
was markedly elevated.[124] Additionally, in MCF-7-derived 
tamoxifen-resistant cells, XBP-1 expression was elevated 
threefold over the parental cell line.[125] The role of XBP-1 in 
estrogen- or tamoxifen-mediated cell proliferation has yet to 
be discovered. Together, these findings suggest that N-CoR 
and SMRT prevent tamoxifen from stimulating breast cancer 
cell proliferation through the repression of XBP-1.

CONCLUSIONS

This review has demonstrated a potential correlation 
between ERα and cell cycle events such that ERα hastens 
the passage of cells through the S to G2 phase transition by 
upregulating ERα target genes and, ultimately, increased 
cellular proliferation. Estrogen signaling through the estrogen 
receptor has been shown to affect the activities of traditional 
cell cycle machinery, as well as that of cell cycle effector 
molecules. Further studies into the correlation of ERα with 
the cell cycle may prove to be of great significance.
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